Cargando…
Robust Detection Model of Vascular Landmarks for Retinal Image Registration: A Two-Stage Convolutional Neural Network
Registration is useful for image processing in computer vision. It can be applied to retinal images and provide support for ophthalmologists in tracking disease progression and monitoring therapeutic responses. This study proposed a robust detection model of vascular landmarks to improve the perform...
Autores principales: | Kim, Ga Young, Kim, Jae Yong, Lee, Sang Hyeok, Kim, Sung Min |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356876/ https://www.ncbi.nlm.nih.gov/pubmed/35941970 http://dx.doi.org/10.1155/2022/1705338 |
Ejemplares similares
-
Automatic Cephalometric Landmark Identification System Based on the Multi-Stage Convolutional Neural Networks with CBCT Combination Images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
Automated cephalometric landmark detection with confidence regions using Bayesian convolutional neural networks
por: Lee, Jeong-Hoon, et al.
Publicado: (2020) -
Landmark Detection in Cardiac MRI by Using a Convolutional Neural
Network
por: Xue, Hui, et al.
Publicado: (2021) -
Weakly-supervised convolutional neural networks for multimodal image registration
por: Hu, Yipeng, et al.
Publicado: (2018) -
LandmarkNet: a 2D digital radiograph landmark estimator for registration
por: Wang, Zhen, et al.
Publicado: (2020)