Cargando…

Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease

Von Hippel‐Lindau (VHL) disease is a hereditary cancer syndrome where individuals are predisposed to tumor development in the brain, adrenal gland, kidney, and other organs. It is caused by pathogenic variants in the VHL tumor suppressor gene. Standardized disease information has been difficult to c...

Descripción completa

Detalles Bibliográficos
Autores principales: Chiorean, Andreea, Farncombe, Kirsten M., Delong, Sean, Andric, Veronica, Ansar, Safa, Chan, Clarissa, Clark, Kaitlin, Danos, Arpad M., Gao, Yizhuo, Giles, Rachel H., Goldenberg, Anna, Jani, Payal, Krysiak, Kilannin, Kujan, Lynzey, Macpherson, Samantha, Maher, Eamonn R., McCoy, Liam G., Salama, Yasser, Saliba, Jason, Sheta, Lana, Griffith, Malachi, Griffith, Obi L., Erdman, Lauren, Ramani, Arun, Kim, Raymond H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356987/
https://www.ncbi.nlm.nih.gov/pubmed/35475554
http://dx.doi.org/10.1002/humu.24392
_version_ 1784763645005135872
author Chiorean, Andreea
Farncombe, Kirsten M.
Delong, Sean
Andric, Veronica
Ansar, Safa
Chan, Clarissa
Clark, Kaitlin
Danos, Arpad M.
Gao, Yizhuo
Giles, Rachel H.
Goldenberg, Anna
Jani, Payal
Krysiak, Kilannin
Kujan, Lynzey
Macpherson, Samantha
Maher, Eamonn R.
McCoy, Liam G.
Salama, Yasser
Saliba, Jason
Sheta, Lana
Griffith, Malachi
Griffith, Obi L.
Erdman, Lauren
Ramani, Arun
Kim, Raymond H.
author_facet Chiorean, Andreea
Farncombe, Kirsten M.
Delong, Sean
Andric, Veronica
Ansar, Safa
Chan, Clarissa
Clark, Kaitlin
Danos, Arpad M.
Gao, Yizhuo
Giles, Rachel H.
Goldenberg, Anna
Jani, Payal
Krysiak, Kilannin
Kujan, Lynzey
Macpherson, Samantha
Maher, Eamonn R.
McCoy, Liam G.
Salama, Yasser
Saliba, Jason
Sheta, Lana
Griffith, Malachi
Griffith, Obi L.
Erdman, Lauren
Ramani, Arun
Kim, Raymond H.
author_sort Chiorean, Andreea
collection PubMed
description Von Hippel‐Lindau (VHL) disease is a hereditary cancer syndrome where individuals are predisposed to tumor development in the brain, adrenal gland, kidney, and other organs. It is caused by pathogenic variants in the VHL tumor suppressor gene. Standardized disease information has been difficult to collect due to the rarity and diversity of VHL patients. Over 4100 unique articles published until October 2019 were screened for germline genotype–phenotype data. Patient data were translated into standardized descriptions using Human Genome Variation Society gene variant nomenclature and Human Phenotype Ontology terms and has been manually curated into an open‐access knowledgebase called Clinical Interpretation of Variants in Cancer. In total, 634 unique VHL variants, 2882 patients, and 1991 families from 427 papers were captured. We identified relationship trends between phenotype and genotype data using classic statistical methods and spectral clustering unsupervised learning. Our analyses reveal earlier onset of pheochromocytoma/paraganglioma and retinal angiomas, phenotype co‐occurrences and genotype–phenotype correlations including hotspots. It confirms existing VHL associations and can be used to identify new patterns and associations in VHL disease. Our database serves as an aggregate knowledge translation tool to facilitate sharing information about the pathogenicity of VHL variants.
format Online
Article
Text
id pubmed-9356987
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-93569872022-12-28 Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease Chiorean, Andreea Farncombe, Kirsten M. Delong, Sean Andric, Veronica Ansar, Safa Chan, Clarissa Clark, Kaitlin Danos, Arpad M. Gao, Yizhuo Giles, Rachel H. Goldenberg, Anna Jani, Payal Krysiak, Kilannin Kujan, Lynzey Macpherson, Samantha Maher, Eamonn R. McCoy, Liam G. Salama, Yasser Saliba, Jason Sheta, Lana Griffith, Malachi Griffith, Obi L. Erdman, Lauren Ramani, Arun Kim, Raymond H. Hum Mutat Research Articles Von Hippel‐Lindau (VHL) disease is a hereditary cancer syndrome where individuals are predisposed to tumor development in the brain, adrenal gland, kidney, and other organs. It is caused by pathogenic variants in the VHL tumor suppressor gene. Standardized disease information has been difficult to collect due to the rarity and diversity of VHL patients. Over 4100 unique articles published until October 2019 were screened for germline genotype–phenotype data. Patient data were translated into standardized descriptions using Human Genome Variation Society gene variant nomenclature and Human Phenotype Ontology terms and has been manually curated into an open‐access knowledgebase called Clinical Interpretation of Variants in Cancer. In total, 634 unique VHL variants, 2882 patients, and 1991 families from 427 papers were captured. We identified relationship trends between phenotype and genotype data using classic statistical methods and spectral clustering unsupervised learning. Our analyses reveal earlier onset of pheochromocytoma/paraganglioma and retinal angiomas, phenotype co‐occurrences and genotype–phenotype correlations including hotspots. It confirms existing VHL associations and can be used to identify new patterns and associations in VHL disease. Our database serves as an aggregate knowledge translation tool to facilitate sharing information about the pathogenicity of VHL variants. John Wiley and Sons Inc. 2022-05-10 2022-09 /pmc/articles/PMC9356987/ /pubmed/35475554 http://dx.doi.org/10.1002/humu.24392 Text en © 2022 The Authors. Human Mutation published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Chiorean, Andreea
Farncombe, Kirsten M.
Delong, Sean
Andric, Veronica
Ansar, Safa
Chan, Clarissa
Clark, Kaitlin
Danos, Arpad M.
Gao, Yizhuo
Giles, Rachel H.
Goldenberg, Anna
Jani, Payal
Krysiak, Kilannin
Kujan, Lynzey
Macpherson, Samantha
Maher, Eamonn R.
McCoy, Liam G.
Salama, Yasser
Saliba, Jason
Sheta, Lana
Griffith, Malachi
Griffith, Obi L.
Erdman, Lauren
Ramani, Arun
Kim, Raymond H.
Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease
title Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease
title_full Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease
title_fullStr Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease
title_full_unstemmed Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease
title_short Large scale genotype‐ and phenotype‐driven machine learning in Von Hippel‐Lindau disease
title_sort large scale genotype‐ and phenotype‐driven machine learning in von hippel‐lindau disease
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356987/
https://www.ncbi.nlm.nih.gov/pubmed/35475554
http://dx.doi.org/10.1002/humu.24392
work_keys_str_mv AT chioreanandreea largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT farncombekirstenm largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT delongsean largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT andricveronica largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT ansarsafa largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT chanclarissa largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT clarkkaitlin largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT danosarpadm largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT gaoyizhuo largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT gilesrachelh largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT goldenberganna largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT janipayal largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT krysiakkilannin largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT kujanlynzey largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT macphersonsamantha largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT mahereamonnr largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT mccoyliamg largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT salamayasser largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT salibajason largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT shetalana largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT griffithmalachi largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT griffithobil largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT erdmanlauren largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT ramaniarun largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease
AT kimraymondh largescalegenotypeandphenotypedrivenmachinelearninginvonhippellindaudisease