Cargando…
Developing machine learning algorithms for dynamic estimation of progression during active surveillance for prostate cancer
Active Surveillance (AS) for prostate cancer is a management option that continually monitors early disease and considers intervention if progression occurs. A robust method to incorporate “live” updates of progression risk during follow-up has hitherto been lacking. To address this, we developed a...
Autores principales: | Lee, Changhee, Light, Alexander, Saveliev, Evgeny S., van der Schaar, Mihaela, Gnanapragasam, Vincent J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357044/ https://www.ncbi.nlm.nih.gov/pubmed/35933478 http://dx.doi.org/10.1038/s41746-022-00659-w |
Ejemplares similares
-
A Novel, Potentially Universal Machine Learning Algorithm to Predict Complications in Total Knee Arthroplasty
por: Devana, Sai K., et al.
Publicado: (2021) -
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Primary Anatomic Total Shoulder Replacements
por: Devana, Sai K, et al.
Publicado: (2022) -
Development of a Machine Learning Algorithm for Prediction of Complications and Unplanned Readmission Following Reverse Total Shoulder Arthroplasty
por: Devana, Sai K., et al.
Publicado: (2021) -
Prognostication and Risk Factors for Cystic Fibrosis via Automated Machine Learning
por: Alaa, Ahmed M., et al.
Publicado: (2018) -
Development and External Validation of the STRATified CANcer Surveillance (STRATCANS) Multivariable Model for Predicting Progression in Men with Newly Diagnosed Prostate Cancer Starting Active Surveillance
por: Light, Alexander, et al.
Publicado: (2022)