Cargando…
A novel EEG-based major depressive disorder detection framework with two-stage feature selection
BACKGROUND: Major depressive disorder (MDD) is a common mental illness, characterized by persistent depression, sadness, despair, etc., troubling people’s daily life and work seriously. METHODS: In this work, we present a novel automatic MDD detection framework based on EEG signals. First of all, we...
Autores principales: | Li, Yujie, Shen, Yingshan, Fan, Xiaomao, Huang, Xingxian, Yu, Haibo, Zhao, Gansen, Ma, Wenjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357341/ https://www.ncbi.nlm.nih.gov/pubmed/35933348 http://dx.doi.org/10.1186/s12911-022-01956-w |
Ejemplares similares
-
Predicting Prognostic Effects of Acupuncture for Depression Using the Electroencephalogram
por: Fan, Xiaomao, et al.
Publicado: (2022) -
Analysis of EEG features and study of automatic classification in first-episode and drug-naïve patients with major depressive disorder
por: Huang, Yuanyuan, et al.
Publicado: (2023) -
Prediction of Clinical Outcomes With EEG Microstate in Patients With Major Depressive Disorder
por: Yan, Danfeng, et al.
Publicado: (2021) -
Spatio-temporal dynamics of EEG features during sleep in major depressive disorder after treatment with escitalopram: a pilot study
por: Wu, Li, et al.
Publicado: (2020) -
Automatic Diagnosis of Major Depressive Disorder Using a High- and Low-Frequency Feature Fusion Framework
por: Wang, Junyu, et al.
Publicado: (2023)