Cargando…
Exploration of Potential Biomarkers and Immune Landscape for Hepatoblastoma: Evidence from Machine Learning Algorithm
This study aimed to investigate the immune landscape in hepatoblastoma (HB) based on deconvolution methods and identify a biomarkers panel for diagnosis based on a machine learning algorithm. Firstly, we identified 277 differentially expressed genes (DEGs) and differentiated and functionally identif...
Autores principales: | Zhou, Peng, Gao, Shanshan, Hu, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357682/ https://www.ncbi.nlm.nih.gov/pubmed/35958911 http://dx.doi.org/10.1155/2022/2417134 |
Ejemplares similares
-
Retracted: Exploration of Potential Biomarkers and Immune Landscape for Hepatoblastoma: Evidence from Machine Learning Algorithm
por: and Alternative Medicine, Evidence-Based Complementary
Publicado: (2023) -
The Cellular and Molecular Landscape of Synchronous Pediatric Sialoblastoma and Hepatoblastoma
por: Yang, Ran, et al.
Publicado: (2022) -
Trans-Ancestry Mutation Landscape of Hepatoblastoma Genomes in Children
por: Liu, Jie, et al.
Publicado: (2021) -
Identification of potential biomarkers of myopia based on machine learning algorithms
por: Zhang, Shengnan, et al.
Publicado: (2023) -
Detection of Serum Protein Biomarkers for the Diagnosis and Staging of Hepatoblastoma
por: Zhao, Wei, et al.
Publicado: (2015)