Cargando…

MITF-Mediated lncRNA CCDC183-As1 Promotes the Tumorigenic Properties and Aerobic Glycolysis of Bladder Cancer via Upregulating TCF7L2

As a primary malignancy tumor of the urology system, bladder cancer (BC) is characterized by its high recurrence and metastasis characteristics. Despite the great improvement in clinical interventions over the past decades, the outcomes of BC patients are still unsatisfactory. Novel molecular mechan...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Wei, Wei, Meng, Su, Zhen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357683/
https://www.ncbi.nlm.nih.gov/pubmed/35957803
http://dx.doi.org/10.1155/2022/6785956
Descripción
Sumario:As a primary malignancy tumor of the urology system, bladder cancer (BC) is characterized by its high recurrence and metastasis characteristics. Despite the great improvement in clinical interventions over the past decades, the outcomes of BC patients are still unsatisfactory. Novel molecular mechanisms for developing effective diagnostic and therapeutic strategies are urgently needed; therefore, we screened the lncRNA expression profile in four pairs of BC tissues, showing that CCDC183-AS1 was the most upregulated lncRNA. Subsequently, results of CCK-8, EdU, Transwell, and aerobic glycolysis detection showed that CCDC183-AS1 plays an oncogene role in BC progression. Furthermore, an investigation of the downstream and upstream factors of CCDC183-AS1 identified a novel MITF/CCDC183-AS1/miR-4731-5p/TCF7L2 axis in BC progression, which might furnish novel insights for developing effective diagnostic and therapeutic strategies for BC.