Cargando…
A Lightweight CNN Model Based on GhostNet
The existing deep learning models have problems such as large weight parameters and slow inference speed of equipment. In practical applications such as fire detection, they often cannot be deployed on equipment with limited resources due to the huge amount of parameters and low efficiency. In respo...
Autores principales: | Wang, Zhong, Li, Tong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357762/ https://www.ncbi.nlm.nih.gov/pubmed/35958795 http://dx.doi.org/10.1155/2022/8396550 |
Ejemplares similares
-
Ghostformer: A GhostNet-Based Two-Stage Transformer for Small Object Detection
por: Li, Sijia, et al.
Publicado: (2022) -
Real-time scene classification of unmanned aerial vehicles remote sensing image based on Modified GhostNet
por: Shen, Xiaole, et al.
Publicado: (2023) -
CodnNet: A lightweight CNN architecture for detection of COVID-19 infection
por: Yang, Jingdong, et al.
Publicado: (2022) -
Lightweight individual cow identification based on Ghost combined with attention mechanism
por: Fu, Lili, et al.
Publicado: (2022) -
SeedSortNet: a rapid and highly effificient lightweight CNN based on visual attention for seed sorting
por: Li, Chunlei, et al.
Publicado: (2021)