Cargando…
Explanatory Optimization of the Prediction Model for Building Energy Consumption
Traditional prediction models, which are based on artificial neural networks (ANNs), consider the various factors affecting building energy consumption comprehensively. However, their explanatory power is not ideal in actual application, resulting in prediction errors of building energy consumption....
Autores principales: | Li, Huiyu, Dong, Hailong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357769/ https://www.ncbi.nlm.nih.gov/pubmed/35958746 http://dx.doi.org/10.1155/2022/9213975 |
Ejemplares similares
-
Application of Deep Learning Model in Building Energy Consumption Prediction
por: Wang, Yiqiong
Publicado: (2022) -
Optimization of COVID-19 prevention and control with low building energy consumption
por: Hu, Tingrui, et al.
Publicado: (2022) -
An optimized grey model for predicting non-renewable energy consumption in China
por: Guo, Jianlong, et al.
Publicado: (2023) -
Multiobjective Optimization Design of Green Building Energy Consumption Based on Inorganic Thermal Insulation Nanomaterials
por: Yuan, Yuan, et al.
Publicado: (2022) -
Building an explanatory model for snakebite envenoming care in the Brazilian Amazon from the indigenous caregivers’ perspective
por: de Farias, Altair Seabra, et al.
Publicado: (2023)