Cargando…
A Novel Organic Dopant for Spiro-OMeTAD in High-Efficiency and Stable Perovskite Solar Cells
Perovskite solar cells (PSCs) have achieved excellent power conversion efficiencies (PCEs); however, there still exist some major challenges on device stability due to hydrophilic bis(trifluoromethane)sulfonimide lithium (Li-TFSI), which is commonly introduced as a p-dopant to increase the hole mobi...
Autor principal: | |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9357902/ https://www.ncbi.nlm.nih.gov/pubmed/35958234 http://dx.doi.org/10.3389/fchem.2022.928712 |
Sumario: | Perovskite solar cells (PSCs) have achieved excellent power conversion efficiencies (PCEs); however, there still exist some major challenges on device stability due to hydrophilic bis(trifluoromethane)sulfonimide lithium (Li-TFSI), which is commonly introduced as a p-dopant to increase the hole mobility and conductivity of 2,2′,7,7′-tetrakis-(N,N-di-4-methoxyphenylamino)-9,9′-spirobifluorene (spiro-OMeTAD) hole-transporting materials (HTMs). Ion migration, corrosiveness, and hygroscopicity induced by the additive Li-TFSI are detrimental to the device stability, which significantly hinders further commercialization of PSCs. Herein, a hydrophobic organic ionic compound, trityltetra(pentafluorophenyl)borate (TPP), is explored as a novel efficient and stable alternative p-dopant, avoiding the long-term aging process to improve the conductivity of spiro-OMeTAD. As a result, the champion efficiency of TPP-based devices delivers performance up to 23.03%, which is higher than that of the Li-TFSI–based devices (22.39%). In addition, the TPP-based devices also exhibit higher average PCE values. The excellent performance with TPP may be associated with the higher work function of doped spiro-OMeTAD and a better alignment of energy levels with the valence band of perovskite, which substantially accelerate interfacial carrier transportation and minimize the open-circuit voltage (V (oc)) loss of PSCs. More importantly, the un-encapsulated TPP-doped devices also display much superior operational stability under maximum power point (MPP) tracking with continuous light illumination in an ambient humid environment, which maintained 96–97% of the initial PCE over 1,100 h outputting. Thus, this work will open up new possibilities for hydrophilic Li-TFSI dopant replacements. |
---|