Cargando…
TMbed: transmembrane proteins predicted through language model embeddings
BACKGROUND: Despite the immense importance of transmembrane proteins (TMP) for molecular biology and medicine, experimental 3D structures for TMPs remain about 4–5 times underrepresented compared to non-TMPs. Today’s top methods such as AlphaFold2 accurately predict 3D structures for many TMPs, but...
Autores principales: | Bernhofer, Michael, Rost, Burkhard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358067/ https://www.ncbi.nlm.nih.gov/pubmed/35941534 http://dx.doi.org/10.1186/s12859-022-04873-x |
Ejemplares similares
-
Embeddings from protein language models predict conservation and variant effects
por: Marquet, Céline, et al.
Publicado: (2021) -
Correcting mistakes in predicting distributions
por: Marot-Lassauzaie, Valérie, et al.
Publicado: (2018) -
PROFtmb: a web server for predicting bacterial transmembrane beta barrel proteins
por: Bigelow, Henry, et al.
Publicado: (2006) -
SETH predicts nuances of residue disorder from protein embeddings
por: Ilzhöfer, Dagmar, et al.
Publicado: (2022) -
CATHe: detection of remote homologues for CATH superfamilies using embeddings from protein language models
por: Nallapareddy, Vamsi, et al.
Publicado: (2023)