Cargando…
Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer
BACKGROUND: Imageology uses high-throughput and automatic computing methods to transform medical image data into quantitative data with feature space, and then makes accurate quantitative analysis, extracts features and builds models, which can intuitively observe the overall features of lesions and...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358505/ https://www.ncbi.nlm.nih.gov/pubmed/35957717 http://dx.doi.org/10.21037/atm-22-2844 |
_version_ | 1784763944782528512 |
---|---|
author | Wang, Xian Wang, Xueyang Zhang, Yanjun Zhang, Dekang Song, Zhou Meng, Qingyu Li, Yunjian Wang, Chunxi |
author_facet | Wang, Xian Wang, Xueyang Zhang, Yanjun Zhang, Dekang Song, Zhou Meng, Qingyu Li, Yunjian Wang, Chunxi |
author_sort | Wang, Xian |
collection | PubMed |
description | BACKGROUND: Imageology uses high-throughput and automatic computing methods to transform medical image data into quantitative data with feature space, and then makes accurate quantitative analysis, extracts features and builds models, which can intuitively observe the overall features of lesions and the surrounding tissues, and provide rich invisible information. At present, the research on the imaging features of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) to predict the molecular typing value has achieved results, but the imaging model based on DWI and DCE-magnetic resonance imaging (MRI) is not enough to predict the molecular subtypes, and the prediction value of the prediction model based on the three-dimensional volume of interest of the lesion to the four molecular subtypes of breast cancer has not been fully studied. METHODS: The clinical data of 202 breast cancer patients at our hospital from October 2020 to November 2021 were collected. All patients were examined with multimodal MRI before surgery. Base on immunohistochemical recombinant Ki-67 protein (Ki-67), estrogen receptor (ER), human epidermal growth factor receptor-2 (HER-2) and progesterone receptor (PR) results, the tumors were divided into four types According to the results of the sentinel lymph node (SLN) biopsies, the patients were divided into SLN (+) and SLN (−) groups. 3-dimensional (3D) Slicer software was used to outline the region of interest (ROI), and AMni-Kinetics software was used for feature extraction. The imaging characteristics were screened using least absolute shrinkage and selection operator (LASSO)-Logistic regression model using R statistical software, and the receiver operating characteristic (ROC) curve was drawn using “pROC” software package to evaluate the prediction efficiency of the model. RESULTS: The most efficacious model at predicting SLN (+) in breast cancer patients with different molecular subtypes and SLN metastasis was the model based on the imageological characteristics of fat inhibition, and T2-weighted imaging (T2WI), T1-weighted imaging + C (T1WI-C), and DWI combined sequences at the tumor + 2 mm periphery. AUC (sensitivity, specificity) of the validation group were 0.831 (0.856, 0.891), 0.832 (0.660, 0.877), 0.801 (0.772, 0.765), 0.904 (0.769, 0.873), and 0.819 (0.810, 0.500) respectively when the tumor was 2 mm around the tumor. CONCLUSIONS: The imaging features extracted from multi-parameter DWI, T1WI+C, and T2WI in breast cancer have certain value at predicting different molecular types and SLNs of breast cancer. |
format | Online Article Text |
id | pubmed-9358505 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | AME Publishing Company |
record_format | MEDLINE/PubMed |
spelling | pubmed-93585052022-08-10 Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer Wang, Xian Wang, Xueyang Zhang, Yanjun Zhang, Dekang Song, Zhou Meng, Qingyu Li, Yunjian Wang, Chunxi Ann Transl Med Original Article BACKGROUND: Imageology uses high-throughput and automatic computing methods to transform medical image data into quantitative data with feature space, and then makes accurate quantitative analysis, extracts features and builds models, which can intuitively observe the overall features of lesions and the surrounding tissues, and provide rich invisible information. At present, the research on the imaging features of dynamic contrast-enhanced (DCE) and diffusion-weighted imaging (DWI) to predict the molecular typing value has achieved results, but the imaging model based on DWI and DCE-magnetic resonance imaging (MRI) is not enough to predict the molecular subtypes, and the prediction value of the prediction model based on the three-dimensional volume of interest of the lesion to the four molecular subtypes of breast cancer has not been fully studied. METHODS: The clinical data of 202 breast cancer patients at our hospital from October 2020 to November 2021 were collected. All patients were examined with multimodal MRI before surgery. Base on immunohistochemical recombinant Ki-67 protein (Ki-67), estrogen receptor (ER), human epidermal growth factor receptor-2 (HER-2) and progesterone receptor (PR) results, the tumors were divided into four types According to the results of the sentinel lymph node (SLN) biopsies, the patients were divided into SLN (+) and SLN (−) groups. 3-dimensional (3D) Slicer software was used to outline the region of interest (ROI), and AMni-Kinetics software was used for feature extraction. The imaging characteristics were screened using least absolute shrinkage and selection operator (LASSO)-Logistic regression model using R statistical software, and the receiver operating characteristic (ROC) curve was drawn using “pROC” software package to evaluate the prediction efficiency of the model. RESULTS: The most efficacious model at predicting SLN (+) in breast cancer patients with different molecular subtypes and SLN metastasis was the model based on the imageological characteristics of fat inhibition, and T2-weighted imaging (T2WI), T1-weighted imaging + C (T1WI-C), and DWI combined sequences at the tumor + 2 mm periphery. AUC (sensitivity, specificity) of the validation group were 0.831 (0.856, 0.891), 0.832 (0.660, 0.877), 0.801 (0.772, 0.765), 0.904 (0.769, 0.873), and 0.819 (0.810, 0.500) respectively when the tumor was 2 mm around the tumor. CONCLUSIONS: The imaging features extracted from multi-parameter DWI, T1WI+C, and T2WI in breast cancer have certain value at predicting different molecular types and SLNs of breast cancer. AME Publishing Company 2022-07 /pmc/articles/PMC9358505/ /pubmed/35957717 http://dx.doi.org/10.21037/atm-22-2844 Text en 2022 Annals of Translational Medicine. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0 (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Original Article Wang, Xian Wang, Xueyang Zhang, Yanjun Zhang, Dekang Song, Zhou Meng, Qingyu Li, Yunjian Wang, Chunxi Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer |
title | Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer |
title_full | Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer |
title_fullStr | Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer |
title_full_unstemmed | Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer |
title_short | Development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer |
title_sort | development of the prediction model based on clinical-imaging omics: molecular typing and sentinel lymph node metastasis of breast cancer |
topic | Original Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358505/ https://www.ncbi.nlm.nih.gov/pubmed/35957717 http://dx.doi.org/10.21037/atm-22-2844 |
work_keys_str_mv | AT wangxian developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer AT wangxueyang developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer AT zhangyanjun developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer AT zhangdekang developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer AT songzhou developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer AT mengqingyu developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer AT liyunjian developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer AT wangchunxi developmentofthepredictionmodelbasedonclinicalimagingomicsmoleculartypingandsentinellymphnodemetastasisofbreastcancer |