Cargando…

Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain

Soil microeukaryotes play a pivotal role in soil nutrient cycling and crop growth in agroecosystems. However, knowledge of microeukaryotic community distribution patterns, assembly processes, and co-existence networks is greatly limited. Here, microbial eukaryotes in bulk and rhizosphere soils of th...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Yu, Xu, Mengwei, Zhao, Yige, Cheng, Liang, Chu, Haiyan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358722/
https://www.ncbi.nlm.nih.gov/pubmed/35958140
http://dx.doi.org/10.3389/fmicb.2022.911116
_version_ 1784763995176042496
author Shi, Yu
Xu, Mengwei
Zhao, Yige
Cheng, Liang
Chu, Haiyan
author_facet Shi, Yu
Xu, Mengwei
Zhao, Yige
Cheng, Liang
Chu, Haiyan
author_sort Shi, Yu
collection PubMed
description Soil microeukaryotes play a pivotal role in soil nutrient cycling and crop growth in agroecosystems. However, knowledge of microeukaryotic community distribution patterns, assembly processes, and co-existence networks is greatly limited. Here, microbial eukaryotes in bulk and rhizosphere soils of the North China Plain were investigated. The results showed that soil pH was the driving factor for the microeukaryotic community composition in the bulk and rhizosphere soils. The soil microeukaryotic community could significantly differ between alkaline and acidic soils. The results indicated that the soil pH had a stronger effect than niche differences on community composition. Partial Mantel tests showed that soil pH and spatial distance had similar effects on the microeukaryotic community composition in the bulk soil. However, in the rhizosphere soil, spatial distance had a stronger effect than soil pH. Infer Community Assembly Mechanisms by Phylogenetic bin-based null model (iCAMP) analysis revealed that drift was the most important process driving microeukaryotic community assembly, with an average relative importance of 37.4–71.1%. Dispersal limitation displayed slightly greater importance in alkaline rhizosphere than in alkaline bulk soils. Meanwhile, the opposite trend was observed in acidic soils. In addition, the contribution of each assembly process to each iCAMP lineage “bin” varied according to the acidic or alkaline conditions of the soil and the niche environment. High proportions of positive links were found within the four ecological networks. Alkaline soil networks, especially the alkaline bulk soil network, showed greater complexity than the acidic soil networks. Natural connectivity analysis revealed that the rhizosphere community had a greater stability than the bulk soil community in alkaline soil. This study provides a foundation for understanding the potential roles of microbial eukaryotes in agricultural soil ecosystem functioning.
format Online
Article
Text
id pubmed-9358722
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-93587222022-08-10 Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain Shi, Yu Xu, Mengwei Zhao, Yige Cheng, Liang Chu, Haiyan Front Microbiol Microbiology Soil microeukaryotes play a pivotal role in soil nutrient cycling and crop growth in agroecosystems. However, knowledge of microeukaryotic community distribution patterns, assembly processes, and co-existence networks is greatly limited. Here, microbial eukaryotes in bulk and rhizosphere soils of the North China Plain were investigated. The results showed that soil pH was the driving factor for the microeukaryotic community composition in the bulk and rhizosphere soils. The soil microeukaryotic community could significantly differ between alkaline and acidic soils. The results indicated that the soil pH had a stronger effect than niche differences on community composition. Partial Mantel tests showed that soil pH and spatial distance had similar effects on the microeukaryotic community composition in the bulk soil. However, in the rhizosphere soil, spatial distance had a stronger effect than soil pH. Infer Community Assembly Mechanisms by Phylogenetic bin-based null model (iCAMP) analysis revealed that drift was the most important process driving microeukaryotic community assembly, with an average relative importance of 37.4–71.1%. Dispersal limitation displayed slightly greater importance in alkaline rhizosphere than in alkaline bulk soils. Meanwhile, the opposite trend was observed in acidic soils. In addition, the contribution of each assembly process to each iCAMP lineage “bin” varied according to the acidic or alkaline conditions of the soil and the niche environment. High proportions of positive links were found within the four ecological networks. Alkaline soil networks, especially the alkaline bulk soil network, showed greater complexity than the acidic soil networks. Natural connectivity analysis revealed that the rhizosphere community had a greater stability than the bulk soil community in alkaline soil. This study provides a foundation for understanding the potential roles of microbial eukaryotes in agricultural soil ecosystem functioning. Frontiers Media S.A. 2022-07-25 /pmc/articles/PMC9358722/ /pubmed/35958140 http://dx.doi.org/10.3389/fmicb.2022.911116 Text en Copyright © 2022 Shi, Xu, Zhao, Cheng and Chu. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Shi, Yu
Xu, Mengwei
Zhao, Yige
Cheng, Liang
Chu, Haiyan
Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain
title Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain
title_full Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain
title_fullStr Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain
title_full_unstemmed Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain
title_short Soil pH Determines the Spatial Distribution, Assembly Processes, and Co-existence Networks of Microeukaryotic Community in Wheat Fields of the North China Plain
title_sort soil ph determines the spatial distribution, assembly processes, and co-existence networks of microeukaryotic community in wheat fields of the north china plain
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358722/
https://www.ncbi.nlm.nih.gov/pubmed/35958140
http://dx.doi.org/10.3389/fmicb.2022.911116
work_keys_str_mv AT shiyu soilphdeterminesthespatialdistributionassemblyprocessesandcoexistencenetworksofmicroeukaryoticcommunityinwheatfieldsofthenorthchinaplain
AT xumengwei soilphdeterminesthespatialdistributionassemblyprocessesandcoexistencenetworksofmicroeukaryoticcommunityinwheatfieldsofthenorthchinaplain
AT zhaoyige soilphdeterminesthespatialdistributionassemblyprocessesandcoexistencenetworksofmicroeukaryoticcommunityinwheatfieldsofthenorthchinaplain
AT chengliang soilphdeterminesthespatialdistributionassemblyprocessesandcoexistencenetworksofmicroeukaryoticcommunityinwheatfieldsofthenorthchinaplain
AT chuhaiyan soilphdeterminesthespatialdistributionassemblyprocessesandcoexistencenetworksofmicroeukaryoticcommunityinwheatfieldsofthenorthchinaplain