Cargando…
Filling space with hypercubes of two sizes – The pythagorean tiling in higher dimensions
We construct a unilateral lattice tiling of [Formula: see text] into hypercubes of two differnet side lengths p or q. This generalizes the Pythagorean tiling in [Formula: see text]. We also show that this tiling is unique up to symmetries, which proves a variation of a conjecture by Bölcskei from 20...
Autor principal: | Führer, Jakob |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9358999/ https://www.ncbi.nlm.nih.gov/pubmed/35966410 http://dx.doi.org/10.1112/mtk.12152 |
Ejemplares similares
-
Bootstrapping hypercubic and hypertetrahedral theories in three dimensions
por: Stergiou, Andreas
Publicado: (2018) -
Higher "spins" in one and two space-time dimensions
por: Bengtsson, A K H, et al.
Publicado: (1986) -
Optimization of High-Dimensional Functions through Hypercube Evaluation
por: Abiyev, Rahib H., et al.
Publicado: (2015) -
Pythagorean fuzzy transportation problem: New way of ranking for Pythagorean fuzzy sets and mean square approach
por: K, Hemalatha, et al.
Publicado: (2023) -
A Novel Latin Hypercube Algorithm via Translational Propagation
por: Pan, Guang, et al.
Publicado: (2014)