Cargando…
Machine learning models to predict the delivered positions of Elekta multileaf collimator leaves for volumetric modulated arc therapy
PURPOSE: Accurate positioning of multileaf collimator (MLC) leaves during volumetric modulated arc therapy (VMAT) is essential for accurate treatment delivery. We developed a linear regression, support vector machine, random forest, extreme gradient boosting (XGBoost), and an artificial neural netwo...
Autores principales: | Sivabhaskar, Sruthi, Li, Ruiqi, Roy, Arkajyoti, Kirby, Neil, Fakhreddine, Mohamad, Papanikolaou, Nikos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359011/ https://www.ncbi.nlm.nih.gov/pubmed/35670318 http://dx.doi.org/10.1002/acm2.13667 |
Ejemplares similares
-
Effect of the simulated half leaf width of a multileaf collimator on volumetric modulated arc therapy plan quality in hippocampal avoidance whole‐brain radiotherapy
por: Li, Ming‐Hsien, et al.
Publicado: (2022) -
Characterization of the Halcyon(TM) multileaf collimator system
por: Lim, Tze Yee, et al.
Publicado: (2019) -
Improved electron collimation system design for Elekta linear accelerators
por: Pitcher, Garrett M., et al.
Publicado: (2017) -
Radiation leakage dose from Elekta electron collimation system
por: Pitcher, Garrett M., et al.
Publicado: (2016) -
Dosimetric characteristics of dual‐layer multileaf collimation for small‐field and intensity‐modulated radiation therapy applications
por: Liu, Yaxi, et al.
Publicado: (2008)