Cargando…
Robustness and reproducibility of an artificial intelligence‐assisted online segmentation and adaptive planning process for online adaptive radiation therapy
Clinical implementation of online adaptive radiation therapy requires initial and ongoing performance assessment of the underlying auto‐segmentation and adaptive planning algorithms, although a straightforward and efficient process for this in phantom is lacking. The purpose of this work was to inve...
Autores principales: | Chapman, John W., Lam, Dao, Cai, Bin, Hugo, Geoffrey D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359017/ https://www.ncbi.nlm.nih.gov/pubmed/35801266 http://dx.doi.org/10.1002/acm2.13702 |
Ejemplares similares
-
Online Adaptive Radiation Therapy: Implementation of a New Process of Care
por: Lamb, James, et al.
Publicado: (2017) -
Delivery of Online Adaptive MRI-Guided Radiation Therapy for a Deaf Patient
por: Linkowski, Lauren C, et al.
Publicado: (2022) -
Influence of air mapping errors on the dosimetric accuracy of prostate CBCT‐guided online adaptive radiation therapy
por: Lemus, Olga M. Dona, et al.
Publicado: (2023) -
Phantom-based Quality Assurance of a Clinical Dose Accumulation Technique Used in an Online Adaptive Radiation Therapy Platform
por: Maraghechi, Borna, et al.
Publicado: (2022) -
A roadmap for implementation of kV‐CBCT online adaptive radiation therapy and initial first year experiences
por: Stanley, Dennis N., et al.
Publicado: (2023)