Cargando…
Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat
Fusarium head blight (FHB), caused by the fungus Fusarium graminearum Schwabe is an important disease of wheat that causes severe yield losses along with serious quality concerns. Incorporating the host resistance from either wild relatives, landraces, or exotic materials remains challenging and has...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359313/ https://www.ncbi.nlm.nih.gov/pubmed/35958201 http://dx.doi.org/10.3389/fpls.2022.946700 |
_version_ | 1784764118057615360 |
---|---|
author | Zhang, Jinfeng Gill, Harsimardeep S. Halder, Jyotirmoy Brar, Navreet K. Ali, Shaukat Bernardo, Amy Amand, Paul St. Bai, Guihua Turnipseed, Brent Sehgal, Sunish K. |
author_facet | Zhang, Jinfeng Gill, Harsimardeep S. Halder, Jyotirmoy Brar, Navreet K. Ali, Shaukat Bernardo, Amy Amand, Paul St. Bai, Guihua Turnipseed, Brent Sehgal, Sunish K. |
author_sort | Zhang, Jinfeng |
collection | PubMed |
description | Fusarium head blight (FHB), caused by the fungus Fusarium graminearum Schwabe is an important disease of wheat that causes severe yield losses along with serious quality concerns. Incorporating the host resistance from either wild relatives, landraces, or exotic materials remains challenging and has shown limited success. Therefore, a better understanding of the genetic basis of native FHB resistance in hard winter wheat (HWW) and combining it with major quantitative trait loci (QTLs) can facilitate the development of FHB-resistant cultivars. In this study, we evaluated a set of 257 breeding lines from the South Dakota State University (SDSU) breeding program to uncover the genetic basis of native FHB resistance in the US hard winter wheat. We conducted a multi-locus genome-wide association study (ML-GWAS) with 9,321 high-quality single-nucleotide polymorphisms (SNPs). A total of six distinct marker-trait associations (MTAs) were identified for the FHB disease index (DIS) on five different chromosomes including 2A, 2B, 3B, 4B, and 7A. Further, eight MTAs were identified for Fusarium-damaged kernels (FDK) on six chromosomes including 3B, 5A, 6B, 6D, 7A, and 7B. Out of the 14 significant MTAs, 10 were found in the proximity of previously reported regions for FHB resistance in different wheat classes and were validated in HWW, while four MTAs represent likely novel loci for FHB resistance. Accumulation of favorable alleles of reported MTAs resulted in significantly lower mean DIS and FDK score, demonstrating the additive effect of FHB resistance alleles. Candidate gene analysis for two important MTAs identified several genes with putative proteins of interest; however, further investigation of these regions is needed to identify genes conferring FHB resistance. The current study sheds light on the genetic basis of native FHB resistance in the US HWW germplasm and the resistant lines and MTAs identified in this study will be useful resources for FHB resistance breeding via marker-assisted selection. |
format | Online Article Text |
id | pubmed-9359313 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-93593132022-08-10 Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat Zhang, Jinfeng Gill, Harsimardeep S. Halder, Jyotirmoy Brar, Navreet K. Ali, Shaukat Bernardo, Amy Amand, Paul St. Bai, Guihua Turnipseed, Brent Sehgal, Sunish K. Front Plant Sci Plant Science Fusarium head blight (FHB), caused by the fungus Fusarium graminearum Schwabe is an important disease of wheat that causes severe yield losses along with serious quality concerns. Incorporating the host resistance from either wild relatives, landraces, or exotic materials remains challenging and has shown limited success. Therefore, a better understanding of the genetic basis of native FHB resistance in hard winter wheat (HWW) and combining it with major quantitative trait loci (QTLs) can facilitate the development of FHB-resistant cultivars. In this study, we evaluated a set of 257 breeding lines from the South Dakota State University (SDSU) breeding program to uncover the genetic basis of native FHB resistance in the US hard winter wheat. We conducted a multi-locus genome-wide association study (ML-GWAS) with 9,321 high-quality single-nucleotide polymorphisms (SNPs). A total of six distinct marker-trait associations (MTAs) were identified for the FHB disease index (DIS) on five different chromosomes including 2A, 2B, 3B, 4B, and 7A. Further, eight MTAs were identified for Fusarium-damaged kernels (FDK) on six chromosomes including 3B, 5A, 6B, 6D, 7A, and 7B. Out of the 14 significant MTAs, 10 were found in the proximity of previously reported regions for FHB resistance in different wheat classes and were validated in HWW, while four MTAs represent likely novel loci for FHB resistance. Accumulation of favorable alleles of reported MTAs resulted in significantly lower mean DIS and FDK score, demonstrating the additive effect of FHB resistance alleles. Candidate gene analysis for two important MTAs identified several genes with putative proteins of interest; however, further investigation of these regions is needed to identify genes conferring FHB resistance. The current study sheds light on the genetic basis of native FHB resistance in the US HWW germplasm and the resistant lines and MTAs identified in this study will be useful resources for FHB resistance breeding via marker-assisted selection. Frontiers Media S.A. 2022-07-25 /pmc/articles/PMC9359313/ /pubmed/35958201 http://dx.doi.org/10.3389/fpls.2022.946700 Text en Copyright © 2022 Zhang, Gill, Halder, Brar, Ali, Bernardo, Amand, Bai, Turnipseed and Sehgal. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Zhang, Jinfeng Gill, Harsimardeep S. Halder, Jyotirmoy Brar, Navreet K. Ali, Shaukat Bernardo, Amy Amand, Paul St. Bai, Guihua Turnipseed, Brent Sehgal, Sunish K. Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat |
title | Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat |
title_full | Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat |
title_fullStr | Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat |
title_full_unstemmed | Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat |
title_short | Multi-Locus Genome-Wide Association Studies to Characterize Fusarium Head Blight (FHB) Resistance in Hard Winter Wheat |
title_sort | multi-locus genome-wide association studies to characterize fusarium head blight (fhb) resistance in hard winter wheat |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359313/ https://www.ncbi.nlm.nih.gov/pubmed/35958201 http://dx.doi.org/10.3389/fpls.2022.946700 |
work_keys_str_mv | AT zhangjinfeng multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT gillharsimardeeps multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT halderjyotirmoy multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT brarnavreetk multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT alishaukat multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT bernardoamy multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT amandpaulst multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT baiguihua multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT turnipseedbrent multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat AT sehgalsunishk multilocusgenomewideassociationstudiestocharacterizefusariumheadblightfhbresistanceinhardwinterwheat |