Cargando…
Failure Detection in Deep Neural Networks for Medical Imaging
Deep neural networks (DNNs) have started to find their role in the modern healthcare system. DNNs are being developed for diagnosis, prognosis, treatment planning, and outcome prediction for various diseases. With the increasing number of applications of DNNs in modern healthcare, their trustworthin...
Autores principales: | Ahmed, Sabeen, Dera, Dimah, Hassan, Saud Ul, Bouaynaya, Nidhal, Rasool, Ghulam |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359318/ https://www.ncbi.nlm.nih.gov/pubmed/35958121 http://dx.doi.org/10.3389/fmedt.2022.919046 |
Ejemplares similares
-
Inception Modules Enhance Brain Tumor Segmentation
por: Cahall, Daniel E., et al.
Publicado: (2019) -
Deep Learning for Automatic Image Segmentation in Stomatology and Its Clinical Application
por: Luo, Dan, et al.
Publicado: (2021) -
Tracking of time-varying genomic regulatory networks with a LASSO-Kalman smoother
por: Khan, Jehandad, et al.
Publicado: (2014) -
Editorial: Artificial intelligence technology and the application in medical imaging
por: Liu, Shuaiqi, et al.
Publicado: (2022) -
Approximate kernel reconstruction for time-varying networks
por: Ditzler, Gregory, et al.
Publicado: (2019)