Cargando…

Tetrodotoxin and paralytic shellfish poisons in gastropod species from Vietnam analyzed by high-performance liquid chromatography and liquid chromatography–tandem mass spectrometry

Among marine toxins, tetrodotoxin (TTX) and paralytic shellfish poisons (PSPs) are known as notorious neurotoxins that induce serious food poisoning incidents in the Southeast Asia region. The aim of this study was to investigate whether TTX and PSP toxins are important issues of seafood safety. Par...

Descripción completa

Detalles Bibliográficos
Autores principales: Jen, Hsiao-Chin, Nguyen, Thi Anh-Tuyet, Wu, Ya-Jung, Hoang, Tung, Arakawa, Osamu, Lin, Wen-Feng, Hwang, Deng-Fwu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taiwan Food and Drug Administration 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359322/
http://dx.doi.org/10.1016/j.jfda.2013.09.005
Descripción
Sumario:Among marine toxins, tetrodotoxin (TTX) and paralytic shellfish poisons (PSPs) are known as notorious neurotoxins that induce serious food poisoning incidents in the Southeast Asia region. The aim of this study was to investigate whether TTX and PSP toxins are important issues of seafood safety. Paralytic toxicity was observed in mice exposed to 34 specimens from five species of gastropods using a PSP bioassay. Five species of gastropods, Natica vitellus, Natica tumidus, Oliva hirasei, Oliva lignaria, and Oliva annulata, were collected from the coastal seawaters in Nha Trang City, Vietnam, between August 2007 and October 2007. The average lethal potency of gastropod specimens was 90 ± 40 (mean ± standard deviation) mouse units (MU) for N. vitellus, 64 ± 19 MU for N. tumidus, 42 ± 28 MU for O. hirasei, 51 ± 17 MU for O. lignaria, and 39 ± 18 MU for O. annulata. All toxic extracts from the sample species were clarified using a C18 Sep-Pak solid-phase extraction column and a microcentrifuge filter prior to analysis. High-performance liquid chromatography coupled with fluorescence detection indicated that the toxins of the olive shell (O. hirasei, O. lignaria, and O. annulata) were mainly composed of saxitoxin (STX) (73–82%), gonyautoxin (GTX) 2, 3 (12–22%), and minor levels of TTX (5–6%). The toxins of N. vitellus and N. tumidus were mainly composed of STX (76–81%) and GTX 1, 4 (19–24%). Furthermore, liquid chromatography–tandem mass spectrometry analysis was used to verify the identity of the PSPs and TTX. Our evidence shows that these gastropods have novel toxin profiles.