Cargando…
Locally weighted PCA regression to recover missing markers in human motion data
“Missing markers problem”, that is, missing markers during a motion capture session, has been raised for many years in Motion Capture field. We propose the locally weighted principal component analysis (PCA) regression method to deal with this challenge. The main merit is to introduce the sparsity o...
Autores principales: | Kieu, Hai Dang, Yu, Hongchuan, Li, Zhuorong, Zhang, Jian Jun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359544/ https://www.ncbi.nlm.nih.gov/pubmed/35939446 http://dx.doi.org/10.1371/journal.pone.0272407 |
Ejemplares similares
-
Diffusion Weighted Image Denoising Using Overcomplete Local PCA
por: Manjón, José V., et al.
Publicado: (2013) -
Predicting Missing Marker Trajectories in Human Motion Data Using Marker Intercorrelations
por: Gløersen, Øyvind, et al.
Publicado: (2016) -
Can Local Geographically Restricted Measurements Be Used to Recover Missing Geo-Spatial Data?
por: Kalinić, Hrvoje, et al.
Publicado: (2021) -
Missing data approaches for probability regression models with
missing outcomes with applications
por: Qi, Li, et al.
Publicado: (2014) -
A Novel Approach to Solve the “Missing Marker Problem” in Marker-Based Motion Analysis That Exploits the Segment Coordination Patterns in Multi-Limb Motion Data
por: Federolf, Peter Andreas
Publicado: (2013)