Cargando…

Blood biomarkers representing maternal-fetal interface tissues used to predict early-and late-onset preeclampsia but not COVID-19 infection

BACKGROUND: A well-known blood biomarker (soluble fms-like tyrosinase-1 [sFLT-1]) for preeclampsia, i.e., a pregnancy disorder, was found to predict severe COVID-19, including in males. True biomarker may be masked by more-abrupt changes related to endothelial instead of placental dysfunction. This...

Descripción completa

Detalles Bibliográficos
Autores principales: Sufriyana, Herdiantri, Salim, Hotimah Masdan, Muhammad, Akbar Reza, Wu, Yu-Wei, Su, Emily Chia-Yu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359600/
https://www.ncbi.nlm.nih.gov/pubmed/35966044
http://dx.doi.org/10.1016/j.csbj.2022.08.011
Descripción
Sumario:BACKGROUND: A well-known blood biomarker (soluble fms-like tyrosinase-1 [sFLT-1]) for preeclampsia, i.e., a pregnancy disorder, was found to predict severe COVID-19, including in males. True biomarker may be masked by more-abrupt changes related to endothelial instead of placental dysfunction. This study aimed to identify blood biomarkers that represent maternal-fetal interface tissues for predicting preeclampsia but not COVID-19 infection. METHODS: The surrogate transcriptome of tissues was determined by that in maternal blood, utilizing four datasets (n = 1354) which were collected before the COVID-19 pandemic. Applying machine learning, a preeclampsia prediction model was chosen between those using blood transcriptome (differentially expressed genes [DEGs]) and the blood-derived surrogate for tissues. We selected the best predictive model by the area under the receiver operating characteristic (AUROC) using a dataset for developing the model, and well-replicated in datasets both with and without an intervention. To identify eligible blood biomarkers that predicted any-onset preeclampsia from the datasets but that were not positive in the COVID-19 dataset (n = 47), we compared several methods of predictor discovery: (1) the best prediction model; (2) gene sets of standard pipelines; and (3) a validated gene set for predicting any-onset preeclampsia during the pandemic (n = 404). We chose the most predictive biomarkers from the best method with the significantly largest number of discoveries by a permutation test. The biological relevance was justified by exploring and reanalyzing low- and high-level, multiomics information. RESULTS: A prediction model using the surrogates developed for predicting any-onset preeclampsia (AUROC of 0.85, 95 % confidence interval [CI] 0.77 to 0.93) was the only that was well-replicated in an independent dataset with no intervention. No model was well-replicated in datasets with a vitamin D intervention. None of the blood biomarkers with high weights in the best model overlapped with blood DEGs. Blood biomarkers were transcripts of integrin-α5 (ITGA5), interferon regulatory factor-6 (IRF6), and P2X purinoreceptor-7 (P2RX7) from the prediction model, which was the only method that significantly discovered eligible blood biomarkers (n = 3/100 combinations, 3.0 %; P =.036). Most of the predicted events (73.70 %) among any-onset preeclampsia were cluster A as defined by ITGA5 (Z-score ≥ 1.1), but were only a minority (6.34 %) among positives in the COVID-19 dataset. The remaining were predicted events (26.30 %) among any-onset preeclampsia or those among COVID-19 infection (93.66 %) if IRF6 Z-score was ≥-0.73 (clusters B and C), in which none was the predicted events among either late-onset preeclampsia (LOPE) or COVID-19 infection if P2RX7 Z-score was <0.13 (cluster C). Greater proportions of predicted events among LOPE were cluster A (82.85 % vs 70.53 %) compared to early-onset preeclampsia (EOPE). The biological relevance by multiomics information explained the biomarker mechanism, polymicrobial infection in any-onset preeclampsia by ITGA5, viral co-infection in EOPE by ITGA5-IRF6, a shared prediction with COVID-19 infection by ITGA5-IRF6-P2RX7, and non-replicability in datasets with a vitamin D intervention by ITGA5. CONCLUSIONS: In a model that predicts preeclampsia but not COVID-19 infection, the important predictors were genes in maternal blood that were not extremely expressed, including the proposed blood biomarkers. The predictive performance and biological relevance should be validated in future experiments.