Cargando…
GFNet: Automatic segmentation of COVID-19 lung infection regions using CT images based on boundary features()
In early 2020, the global spread of the COVID-19 has presented the world with a serious health crisis. Due to the large number of infected patients, automatic segmentation of lung infections using computed tomography (CT) images has great potential to enhance traditional medical strategies. However,...
Autores principales: | Fan, Chaodong, Zeng, Zhenhuan, Xiao, Leyi, Qu, Xilong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359771/ https://www.ncbi.nlm.nih.gov/pubmed/35966970 http://dx.doi.org/10.1016/j.patcog.2022.108963 |
Ejemplares similares
-
Automatically transferring supervised targets method for segmenting lung lesion regions with CT imaging
por: Du, Peng, et al.
Publicado: (2023) -
Automatic COVID-19 lung infected region segmentation and measurement using CT-scans images
por: Oulefki, Adel, et al.
Publicado: (2021) -
Lung segmentation and automatic detection of COVID-19 using radiomic features from chest CT images
por: Zhao, Chen, et al.
Publicado: (2021) -
CT Image Segmentation Using FEM with Optimized Boundary Condition
por: Hishida, Hiroyuki, et al.
Publicado: (2012) -
Automatic Liver Segmentation in CT Images with Enhanced GAN and Mask Region-Based CNN Architectures
por: Wei, Xiaoqin, et al.
Publicado: (2021)