Cargando…

Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations

OBJECTIVES: Carriage of Clostridioides difficile by different species of animals has led to speculation that animals could represent a reservoir of this pathogen for human infections. The objective of this study was to compare C. difficile isolates from humans, dogs, and cattle from a restricted geo...

Descripción completa

Detalles Bibliográficos
Autores principales: Redding, L.E., Tu, V., Abbas, A., Alvarez, M., Zackular, J.P., Gu, C., Bushman, F.D., Kelly, D.J., Barnhart, D., Lee, J.J., Bittinger, K.L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359814/
https://www.ncbi.nlm.nih.gov/pubmed/35217150
http://dx.doi.org/10.1016/j.anaerobe.2022.102539
_version_ 1784764214713253888
author Redding, L.E.
Tu, V.
Abbas, A.
Alvarez, M.
Zackular, J.P.
Gu, C.
Bushman, F.D.
Kelly, D.J.
Barnhart, D.
Lee, J.J.
Bittinger, K.L.
author_facet Redding, L.E.
Tu, V.
Abbas, A.
Alvarez, M.
Zackular, J.P.
Gu, C.
Bushman, F.D.
Kelly, D.J.
Barnhart, D.
Lee, J.J.
Bittinger, K.L.
author_sort Redding, L.E.
collection PubMed
description OBJECTIVES: Carriage of Clostridioides difficile by different species of animals has led to speculation that animals could represent a reservoir of this pathogen for human infections. The objective of this study was to compare C. difficile isolates from humans, dogs, and cattle from a restricted geographic area. METHODS: C. difficile isolates from 36 dogs and 15 dairy calves underwent whole genome sequencing, and phenotypic assays assessing growth and virulence were performed. Genomes of animal-derived isolates were compared to 29 genomes of isolates from a pediatric population as well as 44 reference genomes. RESULTS: Growth rates and relative cytotoxicity of isolates were significantly higher and lower, respectively, in bovine-derived isolates compared to pediatric- and canine-derived isolates. Analysis of core genes showed clustering by host species, though in a few cases, human strains co-clustered with canine or bovine strains, suggesting possible interspecies transmission. Geographic differences (e.g., farm, litter) were small compared to differences between species. In an analysis of accessory genes, the total number of genes in each genome varied between host species, with 6.7% of functional orthologs differentially present/absent between host species and bovine-derived strains having the lowest number of genes. Canine-derived isolates were most likely to be non-toxigenic and more likely to carry phages. A targeted study of episomes identified in local pediatric strains showed sharing of a methicillin-resistance plasmid with dogs, and historic sharing of a wide range of episomes across hosts. Bovine-derived isolates harbored the widest variety of antibiotic-resistance genes, followed by canine CONCLUSIONS: While C. difficile isolates mostly clustered by host species, occasional co-clustering of canine and pediatric-derived isolates suggests the possibility of interspecies transmission. The presence of a pool of resistance genes in animal-derived isolates with the potential to appear in humans given sufficient pressure from antibiotic use warrants concern.
format Online
Article
Text
id pubmed-9359814
institution National Center for Biotechnology Information
language English
publishDate 2022
record_format MEDLINE/PubMed
spelling pubmed-93598142022-08-09 Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations Redding, L.E. Tu, V. Abbas, A. Alvarez, M. Zackular, J.P. Gu, C. Bushman, F.D. Kelly, D.J. Barnhart, D. Lee, J.J. Bittinger, K.L. Anaerobe Article OBJECTIVES: Carriage of Clostridioides difficile by different species of animals has led to speculation that animals could represent a reservoir of this pathogen for human infections. The objective of this study was to compare C. difficile isolates from humans, dogs, and cattle from a restricted geographic area. METHODS: C. difficile isolates from 36 dogs and 15 dairy calves underwent whole genome sequencing, and phenotypic assays assessing growth and virulence were performed. Genomes of animal-derived isolates were compared to 29 genomes of isolates from a pediatric population as well as 44 reference genomes. RESULTS: Growth rates and relative cytotoxicity of isolates were significantly higher and lower, respectively, in bovine-derived isolates compared to pediatric- and canine-derived isolates. Analysis of core genes showed clustering by host species, though in a few cases, human strains co-clustered with canine or bovine strains, suggesting possible interspecies transmission. Geographic differences (e.g., farm, litter) were small compared to differences between species. In an analysis of accessory genes, the total number of genes in each genome varied between host species, with 6.7% of functional orthologs differentially present/absent between host species and bovine-derived strains having the lowest number of genes. Canine-derived isolates were most likely to be non-toxigenic and more likely to carry phages. A targeted study of episomes identified in local pediatric strains showed sharing of a methicillin-resistance plasmid with dogs, and historic sharing of a wide range of episomes across hosts. Bovine-derived isolates harbored the widest variety of antibiotic-resistance genes, followed by canine CONCLUSIONS: While C. difficile isolates mostly clustered by host species, occasional co-clustering of canine and pediatric-derived isolates suggests the possibility of interspecies transmission. The presence of a pool of resistance genes in animal-derived isolates with the potential to appear in humans given sufficient pressure from antibiotic use warrants concern. 2022-04 2022-02-23 /pmc/articles/PMC9359814/ /pubmed/35217150 http://dx.doi.org/10.1016/j.anaerobe.2022.102539 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) ).
spellingShingle Article
Redding, L.E.
Tu, V.
Abbas, A.
Alvarez, M.
Zackular, J.P.
Gu, C.
Bushman, F.D.
Kelly, D.J.
Barnhart, D.
Lee, J.J.
Bittinger, K.L.
Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations
title Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations
title_full Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations
title_fullStr Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations
title_full_unstemmed Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations
title_short Genetic and phenotypic characteristics of Clostridium (Clostridioides) difficile from canine, bovine, and pediatric populations
title_sort genetic and phenotypic characteristics of clostridium (clostridioides) difficile from canine, bovine, and pediatric populations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359814/
https://www.ncbi.nlm.nih.gov/pubmed/35217150
http://dx.doi.org/10.1016/j.anaerobe.2022.102539
work_keys_str_mv AT reddingle geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT tuv geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT abbasa geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT alvarezm geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT zackularjp geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT guc geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT bushmanfd geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT kellydj geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT barnhartd geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT leejj geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations
AT bittingerkl geneticandphenotypiccharacteristicsofclostridiumclostridioidesdifficilefromcaninebovineandpediatricpopulations