Cargando…
Bifunctional sulfilimines enable synthesis of multiple N-heterocycles from alkenes
Intramolecular cyclization of nitrogen-containing molecules onto pendant alkenes is an efficient strategy for the construction of N-heterocycles, which are of paramount importance in, for example, pharmaceuticals and materials. Similar intermolecular cyclization reactions, however, are scarcer for n...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9359915/ https://www.ncbi.nlm.nih.gov/pubmed/35871706 http://dx.doi.org/10.1038/s41557-022-00997-y |
Sumario: | Intramolecular cyclization of nitrogen-containing molecules onto pendant alkenes is an efficient strategy for the construction of N-heterocycles, which are of paramount importance in, for example, pharmaceuticals and materials. Similar intermolecular cyclization reactions, however, are scarcer for nitrogen building blocks, including N-centred radicals, and divergent and modular versions are not established. Here we report the use of sulfilimines as bifunctional N-radical precursors for cyclization reactions with alkenes to produce N-unprotected heterocycles in a single step through photoredox catalysis. Structurally diverse sulfilimines can be synthesized in a single step, and subsequently engage with alkenes to afford synthetically valuable five-, six- and seven-membered heterocycles. The broad and diverse scope is achievable by a radical-polar crossover annulation enabled by the bifunctional character of the reagents, which distinguishes itself from all other N-centred-radical-based reactions. The modular synthesis of the sulfilimines allows for larger structural diversity of N-heterocycle products than is currently achievable with other single cyclization methods. [Image: see text] |
---|