Cargando…
Chlorophyll soft-sensor based on machine learning models for algal bloom predictions
Harmful algal blooms (HABs) are a growing concern to public health and aquatic ecosystems. Long-term water monitoring conducted by hand poses several limitations to the proper implementation of water safety plans. This work combines automatic high-frequency monitoring (AFHM) systems with machine lea...
Autores principales: | Mozo, Alberto, Morón-López, Jesús, Vakaruk, Stanislav, Pompa-Pernía, Ángel G., González-Prieto, Ángel, Aguilar, Juan Antonio Pascual, Gómez-Canaval, Sandra, Ortiz, Juan Manuel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360045/ https://www.ncbi.nlm.nih.gov/pubmed/35941263 http://dx.doi.org/10.1038/s41598-022-17299-5 |
Ejemplares similares
-
Transformers for Multi-Horizon Forecasting in an Industry 4.0 Use Case
por: Vakaruk, Stanislav, et al.
Publicado: (2023) -
Trophic state in a tropical lake based on Chlorophyll‐a profiler data and Sentinel‐2 images: The onset of an algal bloom event
por: Pantoja, Diego A., et al.
Publicado: (2021) -
Synthetic flow-based cryptomining attack generation through Generative Adversarial Networks
por: Mozo, Alberto, et al.
Publicado: (2022) -
Evaluation of Harmful Algal Bloom Outreach Activities
por: Fleming, Lora E., et al.
Publicado: (2007) -
HARMFUL ALGAL BLOOMS: Musty Warnings of Toxicity
por: Freeman, Kris S.
Publicado: (2010)