Cargando…
Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster
Temperate zone animals exhibit seasonal variation in multiple endocrine systems. In most cases, peripheral organs display robust switches in tissue involution and recrudescence in mass. Our understanding of the molecular control of tissue-specific changes in seasonal function remains limited. Centra...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360046/ https://www.ncbi.nlm.nih.gov/pubmed/35941167 http://dx.doi.org/10.1038/s41598-022-16731-0 |
_version_ | 1784764266943873024 |
---|---|
author | Stewart, Calum Hamilton, Graham Marshall, Christopher J. Stevenson, Tyler J. |
author_facet | Stewart, Calum Hamilton, Graham Marshall, Christopher J. Stevenson, Tyler J. |
author_sort | Stewart, Calum |
collection | PubMed |
description | Temperate zone animals exhibit seasonal variation in multiple endocrine systems. In most cases, peripheral organs display robust switches in tissue involution and recrudescence in mass. Our understanding of the molecular control of tissue-specific changes in seasonal function remains limited. Central to this problem is the lack of information on the nucleic acid structure, and distribution of transcripts across tissues in seasonal model organisms. Here we report the transcriptome profile of nine endocrine tissues from Siberian hamsters. Luteinizing hormone receptor expression was localized to gonadal tissues and confirmed previous distribution analyses. Assessment of the prolactin receptor reveal relatively high abundance across tissues involved in reproduction, energy, and water homeostasis. Neither melatonin receptor-1a, nor -1b, were found to be expressed in most tissues. Instead, the closely related G-protein coupled receptor Gpr50 was widely expressed in peripheral tissues. Epigenetic enzymes such as DNA methyltransferase 3a, was widely expressed and the predominant DNA methylation enzyme. Quantitative PCR analyses revealed some sex- and tissue-specific differences for prolactin receptor and DNA methyltransferase 3a expression. These data provide significant information on the distribution of transcripts, relative expression levels and nucleic acid sequences that will facilitate molecular studies into the seasonal programs in mammalian physiology. |
format | Online Article Text |
id | pubmed-9360046 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-93600462022-08-10 Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster Stewart, Calum Hamilton, Graham Marshall, Christopher J. Stevenson, Tyler J. Sci Rep Article Temperate zone animals exhibit seasonal variation in multiple endocrine systems. In most cases, peripheral organs display robust switches in tissue involution and recrudescence in mass. Our understanding of the molecular control of tissue-specific changes in seasonal function remains limited. Central to this problem is the lack of information on the nucleic acid structure, and distribution of transcripts across tissues in seasonal model organisms. Here we report the transcriptome profile of nine endocrine tissues from Siberian hamsters. Luteinizing hormone receptor expression was localized to gonadal tissues and confirmed previous distribution analyses. Assessment of the prolactin receptor reveal relatively high abundance across tissues involved in reproduction, energy, and water homeostasis. Neither melatonin receptor-1a, nor -1b, were found to be expressed in most tissues. Instead, the closely related G-protein coupled receptor Gpr50 was widely expressed in peripheral tissues. Epigenetic enzymes such as DNA methyltransferase 3a, was widely expressed and the predominant DNA methylation enzyme. Quantitative PCR analyses revealed some sex- and tissue-specific differences for prolactin receptor and DNA methyltransferase 3a expression. These data provide significant information on the distribution of transcripts, relative expression levels and nucleic acid sequences that will facilitate molecular studies into the seasonal programs in mammalian physiology. Nature Publishing Group UK 2022-08-08 /pmc/articles/PMC9360046/ /pubmed/35941167 http://dx.doi.org/10.1038/s41598-022-16731-0 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Stewart, Calum Hamilton, Graham Marshall, Christopher J. Stevenson, Tyler J. Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster |
title | Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster |
title_full | Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster |
title_fullStr | Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster |
title_full_unstemmed | Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster |
title_short | Transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the Siberian hamster |
title_sort | transcriptome analyses of nine endocrine tissues identifies organism-wide transcript distribution and structure in the siberian hamster |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360046/ https://www.ncbi.nlm.nih.gov/pubmed/35941167 http://dx.doi.org/10.1038/s41598-022-16731-0 |
work_keys_str_mv | AT stewartcalum transcriptomeanalysesofnineendocrinetissuesidentifiesorganismwidetranscriptdistributionandstructureinthesiberianhamster AT hamiltongraham transcriptomeanalysesofnineendocrinetissuesidentifiesorganismwidetranscriptdistributionandstructureinthesiberianhamster AT marshallchristopherj transcriptomeanalysesofnineendocrinetissuesidentifiesorganismwidetranscriptdistributionandstructureinthesiberianhamster AT stevensontylerj transcriptomeanalysesofnineendocrinetissuesidentifiesorganismwidetranscriptdistributionandstructureinthesiberianhamster |