Cargando…

A one-step, tunable method of selective reactive sputter deposition as a wrinkling approach for silver/polydimethylsiloxane for electrically conductive pliable surfaces

The wrinkle period and morphology of a metal thin film on an elastic substrate is typically controlled by modifying the substrate before carrying out additional metal deposition steps. Herein, we show that a simultaneously selective and reactive sputtering plasma that modifies the surface of a polyd...

Descripción completa

Detalles Bibliográficos
Autores principales: Loh, Joel Y. Y., Zeineddine, Ali, Shayegannia, Moein, McNeil, Robyn, McRae, Liam, Kherani, Nazir P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360048/
https://www.ncbi.nlm.nih.gov/pubmed/35957954
http://dx.doi.org/10.1038/s41378-022-00420-z
Descripción
Sumario:The wrinkle period and morphology of a metal thin film on an elastic substrate is typically controlled by modifying the substrate before carrying out additional metal deposition steps. Herein, we show that a simultaneously selective and reactive sputtering plasma that modifies the surface of a polydimethylsiloxane (PDMS) substrate while not reacting with the metal during the deposition process decreases the wrinkle wavelength and induces additional wrinkling components and features such as ripples or folds. The selective reaction of the nitrogen plasma with PDMS functionalizes the siloxane surface into silicon oxynitride. This hardens the immediate surface of PDMS, with a quadratic increase in the Young’s modulus as a function of the sputtering flow ratio. The increase in the critical strain mismatch and the corresponding presence of folds in the nitrogen-modified wrinkled silver film form a suitable plasmonic platform for surface-enhanced Raman spectroscopy (SERS), yielding an enhancement factor of 4.8 × 10(5) for detecting lipids. This enhancement is linked to the emergence of electromagnetic hotspots from surface plasmon polariton coupling between the folds/wrinkles, which in turn enables the detection of low concentrations of organics using SERS. Furthermore, when strained, the nitrogen-modified wrinkles enhance electrical conductivity by a factor of 12 compared with unmodified films. Finally, the optical properties of the substrate can be tuned by altering the N(2) content. The simple addition of nonreactive nitrogen to silver sputtering enables simultaneous PDMS hardening and growth of the silver film and together provide a new avenue for tuning wrinkling parameters and enhancing the electrical conductivity of pliable surfaces.