Cargando…
A real-time object detection model for orchard pests based on improved YOLOv4 algorithm
Accurate and efficient real-time detection of orchard pests was essential and could improve the economic benefits of the fruit industry. The orchard pest dataset, PestImgData, was built through a series of methods such as web crawler, specimen image collection and data augmentation. PestImgData was...
Autores principales: | Pang, Haitong, Zhang, Yitao, Cai, Weiming, Li, Bin, Song, Ruiyin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360051/ https://www.ncbi.nlm.nih.gov/pubmed/35941200 http://dx.doi.org/10.1038/s41598-022-17826-4 |
Ejemplares similares
-
Lightweight aerial image object detection algorithm based on improved YOLOv5s
por: Deng, Lixia, et al.
Publicado: (2023) -
MC-YOLOv5: A Multi-Class Small Object Detection Algorithm
por: Chen, Haonan, et al.
Publicado: (2023) -
Real-time Concealed Object Detection from Passive Millimeter Wave Images Based on the YOLOv3 Algorithm
por: Pang, Lei, et al.
Publicado: (2020) -
Fruit Detection and Counting in Apple Orchards Based on Improved Yolov7 and Multi-Object Tracking Methods
por: Hu, Jing, et al.
Publicado: (2023) -
Tomato Pest Recognition Algorithm Based on Improved YOLOv4
por: Liu, Jun, et al.
Publicado: (2022)