Cargando…
Interpretable generative deep learning: an illustration with single cell gene expression data
Deep generative models can learn the underlying structure, such as pathways or gene programs, from omics data. We provide an introduction as well as an overview of such techniques, specifically illustrating their use with single-cell gene expression data. For example, the low dimensional latent repr...
Autores principales: | Treppner, Martin, Binder, Harald, Hess, Moritz |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360114/ https://www.ncbi.nlm.nih.gov/pubmed/34988661 http://dx.doi.org/10.1007/s00439-021-02417-6 |
Ejemplares similares
-
Synthetic single cell RNA sequencing data from small pilot studies using deep generative models
por: Treppner, Martin, et al.
Publicado: (2021) -
The performance of deep generative models for learning joint embeddings of single-cell multi-omics data
por: Brombacher, Eva, et al.
Publicado: (2022) -
Exploring generative deep learning for omics data using log-linear models
por: Hess, Moritz, et al.
Publicado: (2020) -
Deep generative models in DataSHIELD
por: Lenz, Stefan, et al.
Publicado: (2021) -
Interpretable dimensionality reduction of single cell transcriptome data with deep generative models
por: Ding, Jiarui, et al.
Publicado: (2018)