Cargando…
Recent development of machine learning-based methods for the prediction of defensin family and subfamily
Nearly all living species comprise of host defense peptides called defensins, that are crucial for innate immunity. These peptides work by activating the immune system which kills the microbes directly or indirectly, thus providing protection to the host. Thus far, numerous preclinical and clinical...
Autores principales: | Charoenkwan, Phasit, Schaduangrat, Nalini, Mahmud, S. M. Hasan, Thinnukool, Orawit, Shoombuatong, Watshara |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Leibniz Research Centre for Working Environment and Human Factors
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360473/ https://www.ncbi.nlm.nih.gov/pubmed/35949489 http://dx.doi.org/10.17179/excli2022-4913 |
Ejemplares similares
-
StackTTCA: a stacking ensemble learning-based framework for accurate and high-throughput identification of tumor T cell antigens
por: Charoenkwan, Phasit, et al.
Publicado: (2023) -
DeepAR: a novel deep learning-based hybrid framework for the interpretable prediction of androgen receptor antagonists
por: Schaduangrat, Nalini, et al.
Publicado: (2023) -
Empirical comparison and analysis of machine learning-based predictors for predicting and analyzing of thermophilic proteins
por: Charoenkwan, Phasit, et al.
Publicado: (2022) -
PVPred-SCM: Improved Prediction and Analysis of Phage Virion Proteins Using a Scoring Card Method
por: Charoenkwan, Phasit, et al.
Publicado: (2020) -
iQSP: A Sequence-Based Tool for the Prediction and Analysis of Quorum Sensing Peptides via Chou’s 5-Steps Rule and Informative Physicochemical Properties
por: Charoenkwan, Phasit, et al.
Publicado: (2019)