Cargando…
Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI
OBJECTIVE: The conventional single-person brain–computer interface (BCI) systems have some intrinsic deficiencies such as low signal-to-noise ratio, distinct individual differences, and volatile experimental effect. To solve these problems, a centralized steady-state visually evoked potential collab...
Autores principales: | Li, Penghai, Su, Jianxian, Belkacem, Abdelkader Nasreddine, Cheng, Longlong, Chen, Chao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360603/ https://www.ncbi.nlm.nih.gov/pubmed/35958998 http://dx.doi.org/10.3389/fnins.2022.971039 |
Ejemplares similares
-
Corrigendum: Multi-person feature fusion transfer learning-based convolutional neural network for SSVEP-based collaborative BCI
por: Li, Penghai, et al.
Publicado: (2022) -
Single-trial P300 classification algorithm based on centralized multi-person data fusion CNN
por: Du, Pu, et al.
Publicado: (2023) -
Information Bottleneck as Optimisation Method for SSVEP-Based BCI
por: Ingel, Anti, et al.
Publicado: (2021) -
EEG-Based Anxious States Classification Using Affective BCI-Based Closed Neurofeedback System
por: Chen, Chao, et al.
Publicado: (2021) -
EEG-Controlled Wall-Crawling Cleaning Robot Using SSVEP-Based Brain-Computer Interface
por: Shao, Lei, et al.
Publicado: (2020)