Cargando…
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
Multi-view multi-label learning (MVML) is an important paradigm in machine learning, where each instance is represented by several heterogeneous views and associated with a set of class labels. However, label incompleteness and the ignorance of both the relationships among views and the correlations...
Autores principales: | He, Zhi-Fen, Zhang, Chun-Hua, Liu, Bin, Li, Bo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360669/ https://www.ncbi.nlm.nih.gov/pubmed/35966181 http://dx.doi.org/10.1007/s10489-022-03945-y |
Ejemplares similares
-
Partial Classifier Chains with Feature Selection by Exploiting Label Correlation in Multi-Label Classification
por: Wang, Zhenwu, et al.
Publicado: (2020) -
Multi-Label Feature Selection Based on High-Order Label Correlation Assumption
por: Zhang, Ping, et al.
Publicado: (2020) -
Interval prediction for graded multi-label classification
por: Lastra, Gerardo, et al.
Publicado: (2014) -
Multi-label emotion classification of Urdu tweets
por: Ashraf, Noman, et al.
Publicado: (2022) -
Multi-Graph Multi-Label Learning Based on Entropy
por: Zhu, Zixuan, et al.
Publicado: (2018)