Cargando…
Deep learning for predicting refractive error from multiple photorefraction images
BACKGROUND: Refractive error detection is a significant factor in preventing the development of myopia. To improve the efficiency and accuracy of refractive error detection, a refractive error detection network (REDNet) is proposed that combines the advantages of a convolutional neural network (CNN)...
Autores principales: | Xu, Daoliang, Ding, Shangshang, Zheng, Tianli, Zhu, Xingshuai, Gu, Zhiheng, Ye, Bin, Fu, Weiwei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360706/ https://www.ncbi.nlm.nih.gov/pubmed/35941613 http://dx.doi.org/10.1186/s12938-022-01025-3 |
Ejemplares similares
-
Early Detection of Refractive Errors by Photorefraction at School Age
por: Alvarez, Marta, et al.
Publicado: (2022) -
Deep Learning–Based Prediction of Refractive Error Using Photorefraction Images Captured by a Smartphone: Model Development and Validation Study
por: Chun, Jaehyeong, et al.
Publicado: (2020) -
Calculation of the Real Corneal Refractive Power after Photorefractive Keratectomy Using Pentacam, When Only the Preoperative Refractive Error is Known
por: De Bernardo, Maddalena, et al.
Publicado: (2020) -
Photorefractive keratectomy for correcting residual refractive error following cataract surgery with premium intraocular lens implantation
por: Fan, Yuan-Yao, et al.
Publicado: (2018) -
Prediction of Refractive Error Based on Ultrawide Field Images With Deep Learning Models in Myopia Patients
por: Yang, Danjuan, et al.
Publicado: (2022)