Cargando…
Bias or biology? Importance of model interpretation in machine learning studies from electronic health records
OBJECTIVE: The rate of diabetic complication progression varies across individuals and understanding factors that alter the rate of complication progression may uncover new clinical interventions for personalized diabetes management. MATERIALS AND METHODS: We explore how various machine learning (ML...
Autores principales: | Momenzadeh, Amanda, Shamsa, Ali, Meyer, Jesse G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9360778/ https://www.ncbi.nlm.nih.gov/pubmed/35958671 http://dx.doi.org/10.1093/jamiaopen/ooac063 |
Ejemplares similares
-
Using statistical and machine learning to help institutions detect suspicious access to electronic health records
por: Boxwala, Aziz A, et al.
Publicado: (2011) -
Natural language processing and machine learning of electronic health records for prediction of first-time suicide attempts
por: Tsui, Fuchiang R, et al.
Publicado: (2021) -
New onset delirium prediction using machine learning and long short-term memory (LSTM) in electronic health record
por: Liu, Siru, et al.
Publicado: (2022) -
Detecting diabetic retinopathy through machine learning on electronic health record data from an urban, safety net healthcare system
por: Ogunyemi, Omolola I, et al.
Publicado: (2021) -
DEPLOYR: a technical framework for deploying custom real-time machine learning models into the electronic medical record
por: Corbin, Conor K, et al.
Publicado: (2023)