Cargando…
Development of a novel peptide to prevent entry of SARS-CoV-2 into lung and olfactory bulb cells of hACE2 expressing mice
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has caused a global pandemic Coronavirus Disease 2019 (COVID-19). Currently, there are no effective treatments specifically for COVID-19 infection. The initial step in SARS-CoV-2 infection is attachment to the a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361269/ https://www.ncbi.nlm.nih.gov/pubmed/35945596 http://dx.doi.org/10.1186/s13041-022-00956-1 |
Sumario: | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus that has caused a global pandemic Coronavirus Disease 2019 (COVID-19). Currently, there are no effective treatments specifically for COVID-19 infection. The initial step in SARS-CoV-2 infection is attachment to the angiotensin-converting enzyme 2 (ACE2) on the cell surface. We have developed a protein peptide that effectively disrupts the binding between the SARS-CoV-2 spike protein and ACE2. When delivered by nasal spray, our peptide prevents SARS-CoV-2 spike protein from entering lung and olfactory bulb cells of mice expressing human ACE2. Our peptide represents a potential novel treatment and prophylaxis against COVID-19. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13041-022-00956-1. |
---|