Cargando…
Antibacterial interactions of pulegone and 1,8‐cineole with monolaurin ornisin against Staphylococcus aureus
The aim of this study was to investigate the antibacterial interactions of pulegone and 1,8‐cineole with monolaurin ornisin against Staphylococcus aureus. The individual and combined antibacterial activities of the compounds were evaluated using minimum inhibitory concentration (MIC), minimum bacter...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361456/ https://www.ncbi.nlm.nih.gov/pubmed/35959252 http://dx.doi.org/10.1002/fsn3.2870 |
Sumario: | The aim of this study was to investigate the antibacterial interactions of pulegone and 1,8‐cineole with monolaurin ornisin against Staphylococcus aureus. The individual and combined antibacterial activities of the compounds were evaluated using minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), fractional inhibitory concentration index (FICi), and time‐kill methods. Furthermore, the mechanism of the antibacterial action of the compounds was tested by measuring the release of cell constituents. The MIC values of pulegone, 1,8‐cineole, nisin, and monolaurin were 5.85 µl/ml, 23.43 µl/ml, 6.25 µg/ml, and 0.031 mg/ml, respectively. A synergistic antibacterial activity (FICi = 0.5) was found between 1,8‐cineole and nisin. The time‐kill assay showed that the populations of S. aureus exposed to 1,8‐cineole, nisin, and their combination were decreased by 5.9, 5.3, and 7.1 log CFU (colony‐forming units)/mL, respectively. The combination of 1,8‐cineole and nisin also induced the highest release of cell constituents. It was concluded that the combination of 1,8‐cineole and nisin could be considered as a novel and promising combination which may reduce the required dose of each antibacterial compound. |
---|