Cargando…
An ensemble-based drug–target interaction prediction approach using multiple feature information with data balancing
BACKGROUND: Recently, drug repositioning has received considerable attention for its advantage to pharmaceutical industries in drug development. Artificial intelligence techniques have greatly enhanced drug reproduction by discovering therapeutic drug profiles, side effects, and new target proteins....
Autores principales: | El-Behery, Heba, Attia, Abdel-Fattah, El-Fishawy, Nawal, Torkey, Hanaa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361677/ https://www.ncbi.nlm.nih.gov/pubmed/35941686 http://dx.doi.org/10.1186/s13036-022-00296-7 |
Ejemplares similares
-
Efficient machine learning model for predicting drug-target interactions with case study for Covid-19
por: El-Behery, Heba, et al.
Publicado: (2021) -
A novel deep autoencoder based survival analysis approach for microarray dataset
por: Torkey, Hanaa, et al.
Publicado: (2021) -
Coronavirus disease 2019 (COVID-19): survival analysis using deep learning and Cox regression model
por: Atlam, Mostafa, et al.
Publicado: (2021) -
An Enhanced Multiple Sclerosis Disease Diagnosis via an Ensemble Approach
por: Torkey, Hanaa, et al.
Publicado: (2022) -
Predicting Drug–Target Interactions Based on the Ensemble Models of Multiple Feature Pairs
por: Wang, Cheng, et al.
Publicado: (2021)