Cargando…
Deep multi-task learning and random forest for series classification by pulse sequence type and orientation
PURPOSE: Increasingly complex MRI studies and variable series naming conventions reveal limitations of rule-based image routing, especially in health systems with multiple scanners and sites. Accurate methods to identify series based on image content would aid post-processing and PACS viewing. Recen...
Autores principales: | Kasmanoff, Noah, Lee, Matthew D., Razavian, Narges, Lui, Yvonne W. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9361920/ https://www.ncbi.nlm.nih.gov/pubmed/35906437 http://dx.doi.org/10.1007/s00234-022-03023-7 |
Ejemplares similares
-
Scan–rescan and inter-vendor reproducibility of neurite orientation dispersion and density imaging metrics
por: Andica, Christina, et al.
Publicado: (2019) -
Use of deep learning in the MRI diagnosis of Chiari malformation type I
por: Tanaka, Kaishin W., et al.
Publicado: (2022) -
Deep learning assistance increases the detection sensitivity of radiologists for secondary intracranial aneurysms in subarachnoid hemorrhage
por: Pennig, Lenhard, et al.
Publicado: (2021) -
Parkinson’s disease: deep learning with a parameter-weighted structural connectome matrix for diagnosis and neural circuit disorder investigation
por: Yasaka, Koichiro, et al.
Publicado: (2021) -
Deep learning regressor model based on nigrosome MRI in Parkinson syndrome effectively predicts striatal dopamine transporter-SPECT uptake
por: Bae, Yun Jung, et al.
Publicado: (2023)