Cargando…
On automatic bias reduction for extreme expectile estimation
Expectiles induce a law-invariant risk measure that has recently gained popularity in actuarial and financial risk management applications. Unlike quantiles or the quantile-based Expected Shortfall, the expectile risk measure is coherent and elicitable. The estimation of extreme expectiles in the he...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362073/ https://www.ncbi.nlm.nih.gov/pubmed/35968040 http://dx.doi.org/10.1007/s11222-022-10118-x |
Sumario: | Expectiles induce a law-invariant risk measure that has recently gained popularity in actuarial and financial risk management applications. Unlike quantiles or the quantile-based Expected Shortfall, the expectile risk measure is coherent and elicitable. The estimation of extreme expectiles in the heavy-tailed framework, which is reasonable for extreme financial or actuarial risk management, is not without difficulties; currently available estimators of extreme expectiles are typically biased and hence may show poor finite-sample performance even in fairly large samples. We focus here on the construction of bias-reduced extreme expectile estimators for heavy-tailed distributions. The rationale for our construction hinges on a careful investigation of the asymptotic proportionality relationship between extreme expectiles and their quantile counterparts, as well as of the extrapolation formula motivated by the heavy-tailed context. We accurately quantify and estimate the bias incurred by the use of these relationships when constructing extreme expectile estimators. This motivates the introduction of classes of bias-reduced estimators whose asymptotic properties are rigorously shown, and whose finite-sample properties are assessed on a simulation study and three samples of real data from economics, insurance and finance. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11222-022-10118-x. |
---|