Cargando…
On automatic bias reduction for extreme expectile estimation
Expectiles induce a law-invariant risk measure that has recently gained popularity in actuarial and financial risk management applications. Unlike quantiles or the quantile-based Expected Shortfall, the expectile risk measure is coherent and elicitable. The estimation of extreme expectiles in the he...
Autores principales: | Girard, Stéphane, Stupfler, Gilles, Usseglio-Carleve, Antoine |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362073/ https://www.ncbi.nlm.nih.gov/pubmed/35968040 http://dx.doi.org/10.1007/s11222-022-10118-x |
Ejemplares similares
-
Extreme value modelling of SARS-CoV-2 community transmission using discrete generalized Pareto distributions
por: Daouia, Abdelaati, et al.
Publicado: (2023) -
Real-time changepoint detection in a nonlinear expectile model
por: Ciuperca, Gabriela, et al.
Publicado: (2023) -
Operating at the extreme: estimating the upper yield boundary of winter wheat production in commercial practice
por: Mitchell, Emily G., et al.
Publicado: (2020) -
Compared to self-immersion, mindful attention reduces salivation and automatic food bias
por: Baquedano, Constanza, et al.
Publicado: (2017) -
Evidence for the embodiment of the automatic approach bias
por: Solzbacher, Johannes, et al.
Publicado: (2022)