Cargando…
Automatic segmentation of COVID-19 from computed tomography images using modified U-Net model-based majority voting approach
The coronavirus disease (COVID-19) is an important public health problem that has spread rapidly around the world and has caused the death of millions of people. Therefore, studies to determine the factors affecting the disease, to perform preventive actions and to find an effective treatment are at...
Autor principal: | Uçar, Murat |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362439/ https://www.ncbi.nlm.nih.gov/pubmed/35968248 http://dx.doi.org/10.1007/s00521-022-07653-z |
Ejemplares similares
-
Improving performance of deep learning models using 3.5D U-Net via majority voting for tooth segmentation on cone beam computed tomography
por: Hsu, Kang, et al.
Publicado: (2022) -
Automatic epicardial adipose tissue segmentation in pulmonary computed tomography venography using nnU-Net
por: Hu, Yifan, et al.
Publicado: (2023) -
Triplanar U-Net with lesion-wise voting for the segmentation of new lesions on longitudinal MRI studies
por: Hitziger, Sebastian, et al.
Publicado: (2022) -
Modified U-Net for liver cancer segmentation from computed tomography images with a new class balancing method
por: Ayalew, Yodit Abebe, et al.
Publicado: (2021) -
Attention‐guided duplex adversarial U‐net for pancreatic segmentation from computed tomography images
por: Li, Meiyu, et al.
Publicado: (2022)