Cargando…
Incorporating causality in energy consumption forecasting using deep neural networks
Forecasting energy demand has been a critical process in various decision support systems regarding consumption planning, distribution strategies, and energy policies. Traditionally, forecasting energy consumption or demand methods included trend analyses, regression, and auto-regression. With advan...
Autores principales: | Sharma, Kshitij, Dwivedi, Yogesh K., Metri, Bhimaraya |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362444/ https://www.ncbi.nlm.nih.gov/pubmed/35967838 http://dx.doi.org/10.1007/s10479-022-04857-3 |
Ejemplares similares
-
Fake news on Facebook and their impact on supply chain disruption during COVID-19
por: Hossain, Mohammad Alamgir, et al.
Publicado: (2022) -
Unveiling functions of the visual cortex using task-specific deep neural networks
por: Dwivedi, Kshitij, et al.
Publicado: (2021) -
Forecasting Financial Time Series through Causal and Dilated Convolutional Neural Networks
por: Börjesson, Lukas, et al.
Publicado: (2020) -
A deep LSTM network for the Spanish electricity consumption forecasting
por: Torres, J. F., et al.
Publicado: (2022) -
Sound Levels Forecasting in an Acoustic Sensor Network Using a Deep Neural Network
por: Navarro, Juan M., et al.
Publicado: (2020)