Cargando…
Multiclass sentiment analysis on COVID-19-related tweets using deep learning models
COVID-19 is an infectious disease with its first recorded cases identified in late 2019, while in March of 2020 it was declared as a pandemic. The outbreak of the disease has led to a sharp increase in posts and comments from social media users, with a plethora of sentiments being found therein. Thi...
Autores principales: | Vernikou, Sotiria, Lyras, Athanasios, Kanavos, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer London
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362523/ https://www.ncbi.nlm.nih.gov/pubmed/35968247 http://dx.doi.org/10.1007/s00521-022-07650-2 |
Ejemplares similares
-
Machine learning for groundwater pollution source identification and monitoring network optimization
por: Kontos, Yiannis N., et al.
Publicado: (2022) -
Explaining COVID-19 diagnosis with Taylor decompositions
por: Hassan, Mohammad Mehedi, et al.
Publicado: (2022) -
Region-based evidential deep learning to quantify uncertainty and improve robustness of brain tumor segmentation
por: Li, Hao, et al.
Publicado: (2022) -
Analysing sentiment change detection of Covid-19 tweets
por: Theocharopoulos, Panagiotis C., et al.
Publicado: (2023) -
FEBDNN: fusion embedding-based deep neural network for user retweeting behavior prediction on social networks
por: Wang, Lidong, et al.
Publicado: (2022)