Cargando…
UAV-based multi-sensor data fusion and machine learning algorithm for yield prediction in wheat
Early prediction of grain yield helps scientists to make better breeding decisions for wheat. Use of machine learning (ML) methods for fusion of unmanned aerial vehicle (UAV)-based multi-sensor data can improve the prediction accuracy of crop yield. For this, five ML algorithms including Cubist, sup...
Autores principales: | Fei, Shuaipeng, Hassan, Muhammad Adeel, Xiao, Yonggui, Su, Xin, Chen, Zhen, Cheng, Qian, Duan, Fuyi, Chen, Riqiang, Ma, Yuntao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362526/ https://www.ncbi.nlm.nih.gov/pubmed/35967193 http://dx.doi.org/10.1007/s11119-022-09938-8 |
Ejemplares similares
-
Entropy Weight Ensemble Framework for Yield Prediction of Winter Wheat Under Different Water Stress Treatments Using Unmanned Aerial Vehicle-Based Multispectral and Thermal Data
por: Fei, Shuaipeng, et al.
Publicado: (2021) -
Combining novel feature selection strategy and hyperspectral vegetation indices to predict crop yield
por: Fei, Shuaipeng, et al.
Publicado: (2022) -
Assessment of Water and Nitrogen Use Efficiencies Through UAV-Based Multispectral Phenotyping in Winter Wheat
por: Yang, Mengjiao, et al.
Publicado: (2020) -
Application of UAV Multisensor Data and Ensemble Approach for High-Throughput Estimation of Maize Phenotyping Traits
por: Shu, Meiyan, et al.
Publicado: (2022) -
Estimation of soil salt content by combining UAV-borne multispectral sensor and machine learning algorithms
por: Wei, Guangfei, et al.
Publicado: (2020)