Cargando…
3DPointCaps++: Learning 3D Representations with Capsule Networks
We present 3DPointCaps++ for learning robust, flexible and generalizable 3D object representations without requiring heavy annotation efforts or supervision. Unlike conventional 3D generative models, our algorithm aims for building a structured latent space where certain factors of shape variations,...
Autores principales: | Zhao, Yongheng, Fang, Guangchi, Guo, Yulan, Guibas, Leonidas, Tombari, Federico, Birdal, Tolga |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362689/ https://www.ncbi.nlm.nih.gov/pubmed/35968252 http://dx.doi.org/10.1007/s11263-022-01632-6 |
Ejemplares similares
-
DA-CapsNet: dual attention mechanism capsule network
por: Huang, Wenkai, et al.
Publicado: (2020) -
CapsTM: capsule network for Chinese medical text matching
por: Yu, Xiaoming, et al.
Publicado: (2021) -
Efficient-CapsNet: capsule network with self-attention routing
por: Mazzia, Vittorio, et al.
Publicado: (2021) -
CapPlant: a capsule network based framework for plant disease classification
por: Samin, Omar Bin, et al.
Publicado: (2021) -
TongueCaps: An Improved Capsule Network Model for Multi-Classification of Tongue Color
por: Ni, Jinghong, et al.
Publicado: (2022)