Cargando…

Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis

MOTIVATION: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter...

Descripción completa

Detalles Bibliográficos
Autores principales: Blair, Andrew P, Hu, Robert K, Farah, Elie N, Chi, Neil C, Pollard, Katherine S, Przytycki, Pawel F, Kathiriya, Irfan S, Bruneau, Benoit G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362878/
https://www.ncbi.nlm.nih.gov/pubmed/35967929
http://dx.doi.org/10.1093/bioadv/vbac051
Descripción
Sumario:MOTIVATION: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter but then only report one. RESULTS: We developed Cell Layers, an interactive Sankey tool for the quantitative investigation of gene expression, co-expression, biological processes and cluster integrity across clustering resolutions. Cell Layers enhances the interpretability of single-cell clustering by linking molecular data and cluster evaluation metrics, providing novel insight into cell populations. AVAILABILITY AND IMPLEMENTATION: https://github.com/apblair/CellLayers.