Cargando…
Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis
MOTIVATION: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362878/ https://www.ncbi.nlm.nih.gov/pubmed/35967929 http://dx.doi.org/10.1093/bioadv/vbac051 |
_version_ | 1784764808921350144 |
---|---|
author | Blair, Andrew P Hu, Robert K Farah, Elie N Chi, Neil C Pollard, Katherine S Przytycki, Pawel F Kathiriya, Irfan S Bruneau, Benoit G |
author_facet | Blair, Andrew P Hu, Robert K Farah, Elie N Chi, Neil C Pollard, Katherine S Przytycki, Pawel F Kathiriya, Irfan S Bruneau, Benoit G |
author_sort | Blair, Andrew P |
collection | PubMed |
description | MOTIVATION: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter but then only report one. RESULTS: We developed Cell Layers, an interactive Sankey tool for the quantitative investigation of gene expression, co-expression, biological processes and cluster integrity across clustering resolutions. Cell Layers enhances the interpretability of single-cell clustering by linking molecular data and cluster evaluation metrics, providing novel insight into cell populations. AVAILABILITY AND IMPLEMENTATION: https://github.com/apblair/CellLayers. |
format | Online Article Text |
id | pubmed-9362878 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-93628782022-08-10 Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis Blair, Andrew P Hu, Robert K Farah, Elie N Chi, Neil C Pollard, Katherine S Przytycki, Pawel F Kathiriya, Irfan S Bruneau, Benoit G Bioinform Adv Application Note MOTIVATION: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter but then only report one. RESULTS: We developed Cell Layers, an interactive Sankey tool for the quantitative investigation of gene expression, co-expression, biological processes and cluster integrity across clustering resolutions. Cell Layers enhances the interpretability of single-cell clustering by linking molecular data and cluster evaluation metrics, providing novel insight into cell populations. AVAILABILITY AND IMPLEMENTATION: https://github.com/apblair/CellLayers. Oxford University Press 2022-08-04 /pmc/articles/PMC9362878/ /pubmed/35967929 http://dx.doi.org/10.1093/bioadv/vbac051 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Application Note Blair, Andrew P Hu, Robert K Farah, Elie N Chi, Neil C Pollard, Katherine S Przytycki, Pawel F Kathiriya, Irfan S Bruneau, Benoit G Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis |
title | Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis |
title_full | Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis |
title_fullStr | Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis |
title_full_unstemmed | Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis |
title_short | Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis |
title_sort | cell layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis |
topic | Application Note |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362878/ https://www.ncbi.nlm.nih.gov/pubmed/35967929 http://dx.doi.org/10.1093/bioadv/vbac051 |
work_keys_str_mv | AT blairandrewp celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis AT hurobertk celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis AT farahelien celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis AT chineilc celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis AT pollardkatherines celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis AT przytyckipawelf celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis AT kathiriyairfans celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis AT bruneaubenoitg celllayersuncoveringclusteringstructureinunsupervisedsinglecelltranscriptomicanalysis |