Cargando…
Cell Layers: uncovering clustering structure in unsupervised single-cell transcriptomic analysis
MOTIVATION: Unsupervised clustering of single-cell transcriptomics is a powerful method for identifying cell populations. Static visualization techniques for single-cell clustering only display results for a single resolution parameter. Analysts will often evaluate more than one resolution parameter...
Autores principales: | Blair, Andrew P, Hu, Robert K, Farah, Elie N, Chi, Neil C, Pollard, Katherine S, Przytycki, Pawel F, Kathiriya, Irfan S, Bruneau, Benoit G |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9362878/ https://www.ncbi.nlm.nih.gov/pubmed/35967929 http://dx.doi.org/10.1093/bioadv/vbac051 |
Ejemplares similares
-
CellWalkR: an R package for integrating and visualizing single-cell and bulk data to resolve regulatory elements
por: Przytycki, Pawel F, et al.
Publicado: (2022) -
SimBoolNet—a Cytoscape plugin for dynamic simulation of signaling networks
por: Zheng, Jie, et al.
Publicado: (2010) -
Mercator: a pipeline for multi-method, unsupervised visualization and distance generation
por: Abrams, Zachary B., et al.
Publicado: (2021) -
Comprehensive visualization of cell–cell interactions in single-cell and spatial transcriptomics with NICHES
por: Raredon, Micha Sam Brickman, et al.
Publicado: (2022) -
iSC.MEB: an R package for multi-sample spatial clustering analysis of spatial transcriptomics data
por: Zhang, Xiao, et al.
Publicado: (2023)