Cargando…
Traffic Flow Prediction and Analysis in Smart Cities Based on the WND-LSTM Model
Aiming at the problem that the road traffic flow in intelligent city is unevenly distributed in time and space, difficult to predict, and prone to traffic congestion, combined with pattern recognition and big data mining technology, this paper proposes a research method to analyze and mine the daily...
Autores principales: | Ma, SuYuan, Zhao, MingYe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363163/ https://www.ncbi.nlm.nih.gov/pubmed/35958752 http://dx.doi.org/10.1155/2022/7079045 |
Ejemplares similares
-
An AutoEncoder and LSTM-Based Traffic Flow Prediction Method
por: Wei, Wangyang, et al.
Publicado: (2019) -
Multi-Section Traffic Flow Prediction Based on MLR-LSTM Neural Network
por: Shi, Ruizhe, et al.
Publicado: (2022) -
Using Classification for Traffic Prediction in Smart Cities
por: Christantonis, Konstantinos, et al.
Publicado: (2020) -
Improved genetic algorithm optimized LSTM model and its application in short-term traffic flow prediction
por: Zhang, Junxi, et al.
Publicado: (2022) -
Convolutional LSTM models to estimate network traffic
por: Waczynska, Joanna
Publicado: (2021)