Cargando…

Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice

Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflammation and antioxidation. However, the effects of ECH in Alzheimer’s disease (AD) are not very clear. This present study investigates the role and mechanism of ECH in the pathol...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Hui, Liu, Xuemin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363339/
https://www.ncbi.nlm.nih.gov/pubmed/35665898
http://dx.doi.org/10.1007/s12035-022-02885-5
_version_ 1784764908261343232
author Qiu, Hui
Liu, Xuemin
author_facet Qiu, Hui
Liu, Xuemin
author_sort Qiu, Hui
collection PubMed
description Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflammation and antioxidation. However, the effects of ECH in Alzheimer’s disease (AD) are not very clear. This present study investigates the role and mechanism of ECH in the pathological process of AD. APP/PS1 mice treated with ECH in 50 mg/kg/day for 3 months. Morris water maze, nesting test, and immunofluorescence staining used to observe whether ECH could improve AD pathology. Western blot used to study the mechanism of ECH improving AD pathology. The results showed that ECH alleviated the memory impairment of APP/PS1 mice by reducing the time of escape latency as well as increasing the times of crossing the platform and rescued the impaired ability to construct nests. In addition, ECH significantly reduced the deposition of senile plaques in the brain and decreased the expression of BACE1 in APP/PS1 mice through activating PI3K/AKT/Nrf2/PPARγ pathway. Furthermore, ECH decreased ROS formation, GP91 and 8-OHdG expression, upregulated the expression of SOD1 and SOD2 as well as activating the PI3K/AKT/Nrf2 signaling pathway. Moreover, ECH inhibited glia cells activation, pro-inflammatory cytokine IL-1β and TNF-α release, NLRP3 inflammasome formation through TXNIP/Trx-1 signaling pathway. In conclusion, this paper reported that ECH improved cognitive function, inhibited oxidative stress, and inflammatory response in AD. Therefore, we suggest that ECH may considered as a potential drug for AD treatment.
format Online
Article
Text
id pubmed-9363339
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Springer US
record_format MEDLINE/PubMed
spelling pubmed-93633392022-08-11 Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice Qiu, Hui Liu, Xuemin Mol Neurobiol Article Echinacoside (ECH), a phenylethanoid glycoside, has protective activity in neurodegenerative disease, including anti-inflammation and antioxidation. However, the effects of ECH in Alzheimer’s disease (AD) are not very clear. This present study investigates the role and mechanism of ECH in the pathological process of AD. APP/PS1 mice treated with ECH in 50 mg/kg/day for 3 months. Morris water maze, nesting test, and immunofluorescence staining used to observe whether ECH could improve AD pathology. Western blot used to study the mechanism of ECH improving AD pathology. The results showed that ECH alleviated the memory impairment of APP/PS1 mice by reducing the time of escape latency as well as increasing the times of crossing the platform and rescued the impaired ability to construct nests. In addition, ECH significantly reduced the deposition of senile plaques in the brain and decreased the expression of BACE1 in APP/PS1 mice through activating PI3K/AKT/Nrf2/PPARγ pathway. Furthermore, ECH decreased ROS formation, GP91 and 8-OHdG expression, upregulated the expression of SOD1 and SOD2 as well as activating the PI3K/AKT/Nrf2 signaling pathway. Moreover, ECH inhibited glia cells activation, pro-inflammatory cytokine IL-1β and TNF-α release, NLRP3 inflammasome formation through TXNIP/Trx-1 signaling pathway. In conclusion, this paper reported that ECH improved cognitive function, inhibited oxidative stress, and inflammatory response in AD. Therefore, we suggest that ECH may considered as a potential drug for AD treatment. Springer US 2022-06-04 2022 /pmc/articles/PMC9363339/ /pubmed/35665898 http://dx.doi.org/10.1007/s12035-022-02885-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Qiu, Hui
Liu, Xuemin
Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice
title Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice
title_full Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice
title_fullStr Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice
title_full_unstemmed Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice
title_short Echinacoside Improves Cognitive Impairment by Inhibiting Aβ Deposition Through the PI3K/AKT/Nrf2/PPARγ Signaling Pathways in APP/PS1 Mice
title_sort echinacoside improves cognitive impairment by inhibiting aβ deposition through the pi3k/akt/nrf2/pparγ signaling pathways in app/ps1 mice
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363339/
https://www.ncbi.nlm.nih.gov/pubmed/35665898
http://dx.doi.org/10.1007/s12035-022-02885-5
work_keys_str_mv AT qiuhui echinacosideimprovescognitiveimpairmentbyinhibitingabdepositionthroughthepi3kaktnrf2ppargsignalingpathwaysinappps1mice
AT liuxuemin echinacosideimprovescognitiveimpairmentbyinhibitingabdepositionthroughthepi3kaktnrf2ppargsignalingpathwaysinappps1mice