Cargando…
Pseudo-T2 mapping for normalization of T2-weighted prostate MRI
OBJECTIVE: Signal intensity normalization is necessary to reduce heterogeneity in T2-weighted (T2W) magnetic resonance imaging (MRI) for quantitative analysis of multicenter data. AutoRef is an automated dual-reference tissue normalization method that normalizes transversal prostate T2W MRI by creat...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9363383/ https://www.ncbi.nlm.nih.gov/pubmed/35150363 http://dx.doi.org/10.1007/s10334-022-01003-9 |
Sumario: | OBJECTIVE: Signal intensity normalization is necessary to reduce heterogeneity in T2-weighted (T2W) magnetic resonance imaging (MRI) for quantitative analysis of multicenter data. AutoRef is an automated dual-reference tissue normalization method that normalizes transversal prostate T2W MRI by creating a pseudo-T2 map. The aim of this study was to evaluate the accuracy of pseudo-T2s and multicenter standardization performance for AutoRef with three pairs of reference tissues: fat/muscle (AutoRef(F)), femoral head/muscle (AutoRef(FH)) and pelvic bone/muscle (AutoRef(PB)). MATERIALS AND METHODS: T2s measured by multi-echo spin echo (MESE) were compared to AutoRef pseudo-T2s in the whole prostate (WP) and zones (PZ and TZ/CZ/AFS) for seven asymptomatic volunteers with a paired Wilcoxon signed-rank test. AutoRef normalization was assessed on T2W images from a multicenter evaluation set of 1186 prostate cancer patients. Performance was measured by inter-patient histogram intersections of voxel intensities in the WP before and after normalization in a selected subset of 80 cases. RESULTS: AutoRef(FH) pseudo-T2s best approached MESE T2s in the volunteer study, with no significant difference shown (WP: p = 0.30, TZ/CZ/AFS: p = 0.22, PZ: p = 0.69). All three AutoRef versions increased inter-patient histogram intersections in the multicenter dataset, with median histogram intersections of 0.505 (original data), 0.738 (AutoRef(FH)), 0.739 (AutoRef(F)) and 0.726 (AutoRef(PB)). DISCUSSION: All AutoRef versions reduced variation in the multicenter data. AutoRef(FH) pseudo-T2s were closest to experimentally measured T2s. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10334-022-01003-9. |
---|